POW 2020-07

Perfect Square

\qquad 임상호

Proposition 1.1 Suppose that x, y, z are positive integers satisfying

$$
\begin{equation*}
0 \leq x^{2}+y^{2}-x y z \leq z+1 \tag{1}
\end{equation*}
$$

Then, $x^{2}+y^{2}-x y z$ is a perfect square.
Proof. We will first prove for $x=1$. By substituting $x=1$, we have

$$
-1 \leq y^{2}-y z=y(y-z) \leq z
$$

If $y<z$, then $y(y-z)=-1$, which implies $y=1, z=2$. Thus we have $x^{2}+y^{2}-x y z=0$ which is a perfect square.

If $y=z$, then $x^{2}+y^{2}-x y z=1$ which is a perfect square.
If $y>z$, then $z \leq z(y-z)<y(y-z) \leq z$, which is a contradiction.
Since the expression is symmetric, we can apply the same logic for $y=1$.
Suppose proposition 1.1 holds for any x, y such that $x \leq m$ and $y \leq n$ for positive integers m and n. We want to show proposition 1.1 also holds for $x=m+1$ and $y=n+1$. For convenience, we will denote $m+1$ and $n+1$ by x and y, respectively.

We may assume $x \leq y$ without loss of generality. Evaluate (1) with respect to z, and we get the following inequality:

$$
\begin{equation*}
\frac{x^{2}+y^{2}-1}{x y+1} \leq z \leq \frac{x^{2}+y^{2}}{x y} \tag{2}
\end{equation*}
$$

Lemma 1. Suppose $x \geq 2$ and $y \geq 2$ satisfy (2). Then,

$$
z=\left\lfloor\frac{x^{2}+y^{2}}{x y}\right\rfloor=\left\lfloor\frac{y}{x}+\frac{x}{y}\right\rfloor .
$$

To show lemma 1.1, it is enough to show

$$
\frac{x^{2}+y^{2}-1}{x y+1}>\frac{x^{2}+y^{2}}{x y}-1 .
$$

This inequality is equivalent to $x^{2} y^{2}>x^{2}+y^{2}$ and it is easy to show since

$$
x^{2} y^{2} \geq 4 y^{2}>x^{2}+y^{2} .
$$

By lemma 1.1 and since $x / y \leq 1$, we get

$$
z=\left\lfloor\frac{y}{x}\right\rfloor \text { or }\left\lfloor\frac{y}{x}\right\rfloor+1
$$

i) $z=\lfloor y / x\rfloor$

This is equivalent to

$$
\begin{align*}
& \frac{y}{x}-1<z \leq \frac{y}{x} \\
\Longleftrightarrow & y-x<x z \leq y \\
\Longleftrightarrow & x z \leq y<x z+x \\
\Longleftrightarrow & y=x z+w, 0 \leq w<x \tag{3}
\end{align*}
$$

Substituting with (3), we have

$$
\begin{aligned}
z+1 & \geq x^{2}+y^{2}-x y z \\
& =x^{2}+(x z)^{2}+2 x w z+w^{2}-(x z)^{2}-x w z \\
& =x^{2}+w^{2}+x w z
\end{aligned}
$$

The first inequality comes from (1). Since we have $x \geq 2$, this inequality implies $z+1 \geq 4+2 w z$. If $w \geq 1$, this gives $z+1 \geq 4+2 z$, so $z \leq-3$. Contradiction. Thus we can conclude $w=0$ and $y=x z$. This shows

$$
x^{2}+y^{2}-x y z=x^{2}
$$

which is obviously a perfect square.
ii) $z=\lfloor y / x\rfloor+1$

This is equivalent to

$$
\begin{aligned}
& \frac{y}{x}<z \leq \frac{y}{x}+1 \\
\Longleftrightarrow & y<x z \leq y+x
\end{aligned}
$$

$$
\begin{align*}
& \Longleftrightarrow \quad x z-x \leq y<x z \\
& \Longleftrightarrow \quad y=x z-w, 0<w \leq x \tag{4}
\end{align*}
$$

Substituting with (4), we have

$$
\begin{align*}
0 & \leq x^{2}+y^{2}-x y z \\
& =x^{2}+(x z)^{2}-2 x w z+w^{2}-(x z)^{2}+x w z \\
& =x^{2}+w^{2}-x w z \\
& \leq z+1 \tag{5}
\end{align*}
$$

The first and last inequality comes from (1). If $y=x$ or $w=x$, then

$$
\begin{aligned}
0 & \leq x^{2}+y^{2}-x y z \\
& =x^{2}+w^{2}-x w z \\
& =2 x^{2}-z x^{2} \\
& =(2-z) x^{2}
\end{aligned}
$$

which implies $z=1$ or $z=2$. In each case, $x^{2}+y^{2}-x y z=x^{2}$ and $x^{2}+y^{2}-x y z=0$, which are perfect squares. Otherwise, $x<y=n+1$ and $w<x=m+1$ by (4). By induction hypothesis and (5), $x^{2}+y^{2}-x y z=w^{2}+x^{2}-w x z$ is a perfect square.

