POW 2020-07

Perfect Square

2016____ 임상호

Proposition 1.1 Suppose that x, y, z are positive integers satisfying

$$0 \le x^2 + y^2 - xyz \le z + 1. \tag{1}$$

Then, $x^2 + y^2 - xyz$ is a perfect square.

Proof. We will first prove for x = 1. By substituting x = 1, we have

$$-1 \le y^2 - yz = y(y - z) \le z.$$

If y < z, then y(y-z) = -1, which implies y = 1, z = 2. Thus we have $x^2 + y^2 - xyz = 0$ which is a perfect square.

If y = z, then $x^2 + y^2 - xyz = 1$ which is a perfect square.

If y > z, then $z \le z(y - z) < y(y - z) \le z$, which is a contradiction.

Since the expression is symmetric, we can apply the same logic for y = 1.

Suppose proposition 1.1 holds for any x, y such that $x \le m$ and $y \le n$ for positive integers m and n. We want to show proposition 1.1 also holds for x = m + 1 and y = n + 1. For convenience, we will denote m + 1 and n + 1 by x and y, respectively.

We may assume $x \leq y$ without loss of generality. Evaluate (1) with respect to z, and we get the following inequality:

$$\frac{x^2 + y^2 - 1}{xy + 1} \le z \le \frac{x^2 + y^2}{xy}.$$
(2)

Lemma 1. Suppose $x \ge 2$ and $y \ge 2$ satisfy (2). Then,

$$z = \left\lfloor \frac{x^2 + y^2}{xy} \right\rfloor = \left\lfloor \frac{y}{x} + \frac{x}{y} \right\rfloor.$$

To show lemma 1.1, it is enough to show

$$\frac{x^2 + y^2 - 1}{xy + 1} > \frac{x^2 + y^2}{xy} - 1$$

This inequality is equivalent to $x^2y^2 > x^2 + y^2$ and it is easy to show since

$$x^2 y^2 \ge 4y^2 > x^2 + y^2.$$

By lemma 1.1 and since $x/y \leq 1$, we get

$$z = \left\lfloor \frac{y}{x} \right\rfloor$$
 or $\left\lfloor \frac{y}{x} \right\rfloor + 1$.

i) $z = \lfloor y/x \rfloor$

This is equivalent to

$$\frac{y}{x} - 1 < z \leq \frac{y}{x}$$

$$\iff y - x < xz \leq y$$

$$\iff xz \leq y < xz + x$$

$$\iff y = xz + w, \ 0 \leq w < x$$
(3)

Substituting with (3), we have

$$z + 1 \ge x^{2} + y^{2} - xyz$$

= $x^{2} + (xz)^{2} + 2xwz + w^{2} - (xz)^{2} - xwz$
= $x^{2} + w^{2} + xwz$

The first inequality comes from (1). Since we have $x \ge 2$, this inequality implies $z+1 \ge 4+2wz$. If $w \ge 1$, this gives $z+1 \ge 4+2z$, so $z \le -3$. Contradiction. Thus we can conclude w = 0 and y = xz. This shows

$$x^2 + y^2 - xyz = x^2$$

which is obviously a perfect square.

ii) $z = \lfloor y/x \rfloor + 1$

This is equivalent to

$$\frac{y}{x} < z \le \frac{y}{x} + 1$$
$$\iff y < xz \le y + x$$

$$\iff xz - x \le y < xz$$
$$\iff y = xz - w, \ 0 < w \le x \tag{4}$$

Substituting with (4), we have

$$0 \le x^{2} + y^{2} - xyz$$

= $x^{2} + (xz)^{2} - 2xwz + w^{2} - (xz)^{2} + xwz$
= $x^{2} + w^{2} - xwz$
 $\le z + 1$ (5)

The first and last inequality comes from (1). If y = x or w = x, then

$$0 \le x^2 + y^2 - xyz$$
$$= x^2 + w^2 - xwz$$
$$= 2x^2 - zx^2$$
$$= (2 - z)x^2$$

which implies z = 1 or z = 2. In each case, $x^2 + y^2 - xyz = x^2$ and $x^2 + y^2 - xyz = 0$, which are perfect squares. Otherwise, x < y = n + 1 and w < x = m + 1 by (4). By induction hypothesis and (5), $x^2 + y^2 - xyz = w^2 + x^2 - wxz$ is a perfect square.