Let's prove $l(n)=2^{n-1}, u(n)=n^{3} 2^{n+1}$ (so that $\frac{u(n)}{l(n)}=4 n^{3}$) satisfies the condition of the problem. We may assume $n>1$.

For any $s<2^{n-1}$ and $b=\left(b_{1}, b_{2}, \cdots, b_{s}\right) \in\{0,1\}^{s}$ we can pick $n-1$ consecutive terms of b and make a subsequence. The number of possible subsequences of b is at most $s<2^{n-1}$ so there is a sequence $c=\left(c_{1}, c_{2}, \cdots, c_{n-1}\right) \in\{0,1\}^{n-1}$ such that c is not a subsequence of $n-1$ consecutive terms of b. Let's define $a_{i, j}$ to be $i+1$ if $i<n$ and $j=c_{i}$, 1 if not. At room $i<n$ of this maze the correct guess of c_{i} will take you to room $i+1$ and the wrong guess will take you to room 1 . So to go to room n starting at room 1 the correct guess of $c_{1}, c_{2}, \cdots, c_{n-1}$ must be made consecutively which is not possible for the sequence b. For any $s<2^{n-1}$ and $b=\left(b_{1}, b_{2}, \cdots, b_{s}\right) \in\{0,1\}^{s}$ there is a maze such that b does not visit every room and $l(n)=2^{n-1}$ satisfies the condition of the problem.

The total number of possible mazes (starting conditions) is at most $n^{2 n} \times n=$ $n^{2 n+1}$ by determining the $a_{i, j}$ and the starting point. Let's set $s=n^{3} 2^{n+1}$ and consider all 2^{s} sequences $b=\left(b_{1}, b_{2}, \cdots, b_{s}\right) \in\{0,1\}^{s}$. For a fixed maze and $i \in[n]$, at any starting point there is a sequence of less than n terms that visits room i so the number of sequences of length n that does not visit room i is at most $2^{n}-1$. For the fixed maze and i, the number of sequences of length s that does not visit room i is at most $\left(2^{n}-1\right)^{\frac{s}{n}}$ and the number of sequences of length s such that there is a maze where the sequence does not visit all the rooms is at most $n^{2 n+1} \times n \times\left(2^{n}-1\right)^{\frac{s}{n}}=n^{2(n+1)}\left(2^{n}-1\right)^{\frac{s}{n}}$. $\ln \frac{n^{2(n+1)}\left(2^{n}-1\right)^{\frac{s}{n}}}{2^{s}}=2(n+1) \ln n+\frac{s}{n} \ln \left(1-\frac{1}{2^{n}}\right)$

$$
<2(n+1)(n-1)-\frac{s}{n} \frac{1}{2^{n}}=2\left(n^{2}-1\right)-2 n^{2}<0
$$

so $n^{2(n+1)}\left(2^{n}-1\right)^{\frac{s}{n}}<2^{s}$ and there is a sequence of length s which visits every room for every maze. $u(n)=n^{3} 2^{n+1}$ satisfies the condition of the problem.

