# POW 2020-05 

2018 김기수

## 1 Construct $Y$

We will construct a "completion" of $X$, and imbed $X$ to its completion by inclusion-like mapping. Let $S_{X}$ be a collection of Cauchy sequences in $X$. Define a relation $\sim$ on $S_{X}$ by

$$
\left\{x_{n}\right\} \sim\left\{y_{n}\right\} \Longleftrightarrow \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

This is an equivalence relation. The reflexivity and symmetry hold since $d(x, x)=0$ and $d(x, y)=$ $d(y, x)$. Suppose $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ are Cauchy sequences in $X$ such that $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ and $\left\{y_{n}\right\} \sim\left\{z_{n}\right\}$. Observe that $\lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right) \leq \lim _{n \rightarrow \infty}\left(d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)+\lim _{n \rightarrow \infty} d\left(y_{n}, z_{n}\right)=0$ hence $\left\{x_{n}\right\} \sim\left\{z_{n}\right\}$ and the transitivity holds. Let $Y=S_{X} / \sim$ be the collection of equivalence classes of $S_{X}$.

Define a function $d^{\prime}: Y \times Y \rightarrow \mathbb{R}$ by

$$
\left(\left[\left\{x_{n}\right\}\right],\left[\left\{y_{n}\right\}\right]\right) \mapsto \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) .
$$

Claim that $d^{\prime}$ is well defined, and is a metric on $Y$.
Firstly, we will show that $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges for $\left\{x_{n}\right\},\left\{y_{n}\right\} \in S_{X}$. For arbitrary $\varepsilon>0$, there exists an integer $N$ such that $n \geq N$ implies $d\left(x_{N}, x_{n}\right) \leq \varepsilon / 2$ and $d\left(y_{N}, y_{n}\right) \leq \varepsilon / 2$, since the sequences are Cauchy. By the triangle inequality, we have $d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{N}\right)+d\left(x_{N}, y_{N}\right)+d\left(y_{N}, y_{n}\right) \leq d\left(x_{N}, y_{N}\right)+$ $\varepsilon$. Similarly, $d\left(x_{N}, y_{N}\right) \leq d\left(x_{n}, y_{n}\right)+\varepsilon$. Deduce that $d\left(x_{n}, y_{n}\right) \in\left[d\left(x_{N}, y_{N}\right)-\varepsilon, d\left(x_{N}, y_{N}\right)+\varepsilon\right]$ if $n \geq N$. For $\varepsilon_{i}=\frac{1}{2^{i}}$, choose $N_{1} \leq N_{2} \leq \cdots$ such that $d\left(x_{n}, y_{n}\right) \in\left[d\left(x_{N_{i}}, y_{N_{i}}\right)-\varepsilon_{i}, d\left(x_{N_{i}}, y_{N_{i}}\right)+\varepsilon_{i}\right]$ if $n \geq N_{i}$, as the above argument. Let $\alpha_{i}=d\left(x_{N_{i}}, y_{N_{i}}\right)$ and $A_{0}=\mathbb{R}, A_{i}=\left[\alpha_{i}-\varepsilon_{i}, \alpha_{i}+\varepsilon_{i}\right] \cap A_{i-1}$. For arbitrary $n, \bigcap_{i=1}^{n} A_{i}$ is nonempty since $\alpha_{n+1} \in A_{i}$ for $1 \leq i \leq n$. The collection of closed sets $\left\{A_{i}\right\}_{i \geq 1}$ has the finite intersection property as $A_{1} \supset A_{2} \supset \cdots$. Using the compactness of $A_{1}$, deduce that $A=\bigcap_{i=1}^{\infty} A_{i}$ is nonempty. This set cannot contain more than one element. On contrary, assume that $a<b$ are in
$A$. There exists $\varepsilon_{n}$ such that $2 \varepsilon_{n}<b-a$. It contradicts $A \subset A_{n}$ hence the assumption is absurd. Let $A=\{\alpha\} . \alpha$ is the limit of $\left\{d\left(x_{n}, y_{n}\right)\right\}$. For $\varepsilon>0$, choose $\varepsilon_{i}=\frac{1}{2^{i}}$ so that $3 \varepsilon_{i}<\varepsilon . \alpha$ is contained in $A_{i}$, and for every $n \geq N_{i} d\left(x_{n}, y_{n}\right) \in A_{i}$. Hence $\left|\alpha-d\left(x_{n}, y_{n}\right)\right| \leq 2 \varepsilon_{i}<\varepsilon$ for every $n \geq N_{i}$.

Let $\left\{x_{n}^{\prime}\right\}$ be an another representative of $\left[\left\{x_{n}\right\}\right]$, and $\left\{y_{n}\right\}$ be a Cauchy sequence. Observe that

$$
d\left(x_{n}^{\prime}, y_{n}\right) \leq d\left(x_{n}^{\prime}, x_{n}\right)+d\left(x_{n}, y_{n}\right)
$$

hence

$$
\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, x_{n}\right)+\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0+\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

Similarly, $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right)$ holds so two limits are the same. This implies that $d^{\prime}$ is independent of the choice of representatives.

It is easy to verify that $d^{\prime}$ is a metric on $Y$. Let $s, t, u$ be elements of $Y$, and $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be their representatives. Since $d(x, y) \geq 0$ for every $x, y \in X, d^{\prime}(s, t) \geq 0$. By the definition of $Y=S_{X} / \sim$, $d^{\prime}(s, t)=0$ if and only if $s=t$. Clearly $d^{\prime}(s, t)=d^{\prime}(t, s)$. To obtain the triangle inequality, observe that

$$
\begin{aligned}
d^{\prime}(s, u) & =\lim _{n \rightarrow \infty} d\left(a_{n}, c_{n}\right) \\
& \leq \lim _{n \rightarrow \infty}\left(d\left(a_{n}, b_{n}\right)+d\left(b_{n}, c_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} d\left(a_{n}, b_{n}\right)+\lim _{n \rightarrow \infty} d\left(b_{n}, c_{n}\right) \\
& =d^{\prime}(s, t)+d^{\prime}(t, u)
\end{aligned}
$$

Therefore, $\left(Y, d^{\prime}\right)$ is a metric space. Let rename $Y$ as $X^{*}$.

## 2 Completeness of $Y=X^{*}$

Firstly, observe that $(X, d)$ can be isometrically imbedded into $X^{*}$ naturally. For $x \in X$, consider the sequence $\left\{a_{n}\right\}$ such that every term is equal to $x$. Note that this is a Cauchy sequence. Let $x^{*}=\left[\left\{a_{n}\right\}\right]$. Define a map $\iota: X \rightarrow X^{*}, x \mapsto x^{*}$. Because $d^{\prime}(\iota(x), \iota(y))=d^{\prime}\left(x^{*}, y^{*}\right)=\lim _{n \rightarrow \infty} d(x, y)=d(x, y), \iota$ is an isometric embedding.
$\iota(X)$ is dense in $X^{*}$. Let $\left[\left\{x_{n}\right\}\right] \in X^{*}$. Since $\left\{x_{n}\right\}$ is Cauchy, for $\varepsilon>0$, there exists $N$ such that $d\left(x_{N}, x_{n}\right) \leq \varepsilon / 2$ if $n \geq N$. The $\varepsilon$-ball centered at $\left[\left\{x_{n}\right\}\right]$ intersects $\iota(X): d^{\prime}\left(x_{N}^{*},\left[\left\{x_{n}\right\}\right]\right)=$ $\lim _{n \rightarrow \infty} d\left(x_{N}, x_{n}\right) \leq \varepsilon / 2<\varepsilon$. This argument can be applied for arbitrary $\varepsilon$ hence $\left[\left\{x_{n}\right\}\right]$ is a limit point
of $\iota(X)$.
We will show that $\left(Y, d^{\prime}\right)$ is a complete metric space. Let $y_{1}, y_{2}, \cdots$ be a Cauchy sequence in $X^{*}$, and let $y_{i}=\left[\left\{a_{i j}\right\}\right]$. Let $\varepsilon_{i}=\frac{1}{2^{i}}$, and choose $N_{1} \leq N_{2} \leq \cdots$ such that $d^{\prime}\left(a_{i N_{i}}^{*}, y_{i}\right) \leq \frac{\varepsilon_{i}}{5}$ hence $d\left(a_{i N_{i}}, a_{i n}\right) \leq \frac{\varepsilon_{i}}{4}$ for every sufficiently large $n$. As observed in the above paragraph, these choices are possible. Claim that the sequence $\left\{a_{n N_{n}}\right\}$ is Cauchy, and the limit of the sequence $\left\{y_{i}\right\}$.

For $\varepsilon>0$, fix $k$ such that $\varepsilon_{k}<\varepsilon$. Choose $M \geq k$ such that $d^{\prime}\left(y_{i}, y_{j}\right) \leq \frac{\varepsilon_{k}}{4}$ if $i, j \geq M$. Observe that

$$
\begin{aligned}
d\left(a_{i N_{i}}, a_{j N_{j}}\right) & \leq d\left(a_{i N_{i}}, a_{i n}\right)+d\left(a_{i n}, a_{j n}\right)+d\left(a_{j n}, a_{j N_{j}}\right) \\
& \leq \frac{\varepsilon_{i}}{4}+d\left(a_{i n}, a_{j n}\right)+\frac{\varepsilon_{j}}{4} \\
& \leq \frac{\varepsilon_{k}}{2}+d\left(a_{i n}, a_{j n}\right)
\end{aligned}
$$

for $M \leq i<j$ and for sufficiently large $n \geq N_{j}$. Since $\lim _{n \rightarrow \infty} d\left(a_{i n}, a_{j n}\right)=d^{\prime}\left(y_{i}, y_{j}\right) \leq \frac{\varepsilon_{k}}{4}$, there exists sufficiently large $n$ such that $d\left(a_{i n}, a_{j n}\right) \leq \frac{\varepsilon_{k}}{2}$. Therefore, $d\left(a_{i N_{i}}, a_{j N_{j}}\right) \leq \frac{\varepsilon_{k}}{2}+\frac{\varepsilon_{k}}{2}=\varepsilon_{k}<\varepsilon$ for every $i, j \geq M$ hence $\left\{a_{i N_{i}}\right\}$ is Cauchy and $\left[\left\{a_{i N_{i}}\right\}\right] \in X^{*}$.

Finally, it is remianing to show $\lim _{i \rightarrow \infty} y_{i}=\left[\left\{a_{n N_{n}}\right\}\right]$. Let $y=\left[\left\{a_{n N_{n}}\right\}\right]$. Claim that $\lim _{i \rightarrow \infty} d^{\prime}\left(y_{i}, y\right)=0$. This is equivalent to show that $\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} d\left(a_{i n}, a_{n N_{n}}\right)=0$. For given $\varepsilon>0$, fix $k$ such that $d^{\prime}\left(y_{i}, y_{j}\right) \leq \frac{\varepsilon}{4}$ if $i, j \geq k$, and that $\varepsilon_{k}=\frac{1}{2^{k}}<\frac{\varepsilon}{4}$. For chosen $k$, choose $l \geq k$ such that $i, j \geq l$ implies $d^{\prime}\left(y_{i}, y_{j}\right) \leq \frac{\varepsilon_{k}}{4}$. Assume that $n \geq N_{l}$ and $n \geq l$. For $m \geq N_{n}$, observe that

$$
\begin{aligned}
d\left(a_{l n}, a_{n N_{n}}\right) & \leq d\left(a_{l n}, a_{l N_{l}}\right)+d\left(a_{l N_{l}}, a_{n N_{n}}\right) \\
& \leq d\left(a_{l n}, a_{l N_{l}}\right)+d\left(a_{l N_{l}}, a_{l m}\right)+d\left(a_{l m}, a_{n m}\right)+d\left(a_{n m}, a_{n N_{n}}\right) \\
& \leq \frac{\varepsilon_{l}}{4}+\frac{\varepsilon_{k}}{4}+d\left(a_{l m}, a_{n m}\right)+\frac{\varepsilon_{k}}{4} \\
& \leq \frac{\varepsilon_{l}}{4}+\frac{\varepsilon_{k}}{2}+d\left(a_{l m}, a_{n m}\right)
\end{aligned}
$$

By our choice of $l, d\left(a_{l m}, a_{n m}\right) \leq \frac{\varepsilon_{k}}{2}$ for sufficiently large $m$. Hence $d\left(a_{l n}, a_{n N_{n}}\right) \leq \frac{\varepsilon_{l}}{4}+\frac{\varepsilon_{k}}{2}+\frac{\varepsilon_{k}}{2} \leq 2 \varepsilon_{k}$ for every sufficiently large $n$. Assume $i \geq k$. Observe that

$$
d\left(a_{i n}, a_{n N_{n}}\right) \leq d\left(a_{i n}, a_{l n}\right)+d\left(a_{l n}, a_{n N_{n}}\right) \leq \frac{\varepsilon}{3}+2 \varepsilon_{k}<\frac{5}{6} \varepsilon,
$$

for every large $n$ such that $d\left(a_{i n}, a_{l n}\right) \leq \frac{\varepsilon}{3}$. This inequality holds by the choice of $k$ and $i, l \geq k$. Deduce that $\lim _{n \rightarrow \infty} d\left(a_{i n}, a_{n N_{n}}\right) \leq \frac{5}{6} \varepsilon<\varepsilon$ for every $i \geq k$. This argument holds for arbitrary $\varepsilon>0$ hence $\lim _{i \rightarrow \infty} \lim _{n \rightarrow \infty} d\left(a_{i n}, a_{n N_{n}}\right)=0$ and $\lim _{i \rightarrow \infty} d^{\prime}\left(y_{i}, y\right)=0$. Therefore, every Cauchy sequence in $X^{*}$ converges.

