pow 2019-21's solution

sunghun ko

November 30 2019

Let λ be a singular value of a A, which is not contained in the interval $(1-\delta, 1+\delta)$. Then λ^2 is an eigenvalue of $A^T A$. When x is an eigenvector who corresponds to λ^2 with norm of 1, $|(A^T A - I)x| = |(1-\lambda^2)x| = |1-\lambda^2|$. Since λ is not contained in $(1-\delta, 1+\delta)$, and δ is less than 1, $1-\lambda^2 \ge 2\delta - \delta^2 > \delta$ or $\lambda^2 - 1 \ge 2\delta + \delta^2 > \delta$ hence $||A^T A - I|| > \delta$, which contradicts to given condition. Thus there is no such λ , and every singular value of A is contained in $(1-\delta, 1+\delta)$.