POW 2019-19

2016 \qquad Chae Jiseok

November 20, 2019

Suppose that \mathfrak{n} is odd. Then in S, there are odd number of odd numbers, hence the sum of all elements in S is odd. If there exists A and B satisfying the conditions, then sum of elements of S should be twice the sum of elements of A, so the sum of elements of S must be even. Therefore there cannot exist two subsets A and B of S satisfying the given conditions. Hence n cannot be odd.

Suppose $n=2$, and let m be arbitrary. Suppose there exists A and B satisfying the given conditions. Without loss of generality, we may assume $(m+1)^{2} \in A$. Then we have the following three cases.

- If $(m+2)^{2} \in A$, then the sum of elements of A is $2 m^{2}+6 m+5$, while the sum of elements of B is $2 m^{2}+14 m+25$, which is strictly greater than that of A for $m \geqslant 0$.
- If $(m+3)^{2} \in A$, then the sum of elements of A is $2 m^{2}+8 m+10$, while the sum of elements of B is $2 m^{2}+12 m+20$, which is strictly greater than that of A for $m \geqslant 0$.
- If $(m+4)^{2} \in A$, then the sum of elements of A is $2 m^{2}+10 m+17$, while the sum of elements of B is $2 m^{2}+10 m+13$, which is strictly less than that of A for $m \geqslant 0$.

Therefore there cannot exist A and B satisfying the given conditions. Hence n cannot be 2 .
Before we consider the case when $n \geqslant 2$ and n is even, we consider the following lemma.
Lemma 1. Any integer $\mathrm{k} \geqslant 2$ can be expressed as $\mathrm{k}=2 \mathrm{a}+3 \mathrm{~b}$, where a and b are nonnegative integers.
Proof. It is clear that $2=2 \cdot 1+3 \cdot 0,3=2 \cdot 0+3 \cdot 1$, and $4=2 \cdot 2+3 \cdot 0$.
For $k \geqslant 5$, depending on $k \bmod 3$, there exists positive integers q and r such that $2 \leqslant r \leqslant 4$ and $k=3 q+r$. Expressing r as what we have seen in the previous paragraph, k is clearly representable in the form of $k=2 a+3 b$ with a, b being nonnegative integers.

From this lemma we have an immediate corollary, as follows.
Corollary 1. For any positive integer $k \geqslant 8$ with k divisible by $4, k$ can be represented in the form of $k=8 a+12 b$ for nonnegative integers a and b.

Now suppose n is an even integer such that $n \geqslant 4$. Let m be arbitrary. Observe that, when $n=4$, we have a partition of S as

$$
A=\left\{(m+1)^{2},(m+4)^{2},(m+6)^{2},(m+7)^{2}\right\}, \quad B=\left\{(m+2)^{2},(m+3)^{2},(m+5)^{2},(m+8)^{2}\right\}
$$

satisfying the given conditions. Also when $n=6$, we have a partition of S as

$$
\begin{aligned}
& A=\left\{(m+1)^{2},(m+3)^{2},(m+7)^{2},(m+8)^{2},(m+9)^{2},(m+11)^{2}\right\}, \\
& \quad B=\left\{(m+2)^{2},(m+4)^{2},(m+5)^{2},(m+6)^{2},(m+10)^{2},(m+12)^{2}\right\}
\end{aligned}
$$

satisfying the given conditions. Now if n is even and $n \geqslant 8$, then by Corollary 1 , there exists positive integers α and β such that $2 n=8 \alpha+12 \beta$. Thus we can divide S into α chuncks of 8 consecutive squares, and β chuncks of 12 consecutive squares, with all chuncks being disjoint. For each chunck, partition the squares as in the cases $n=4$ and $n=6$. Collecting each partitions from chuncks, we obtain a partition A and B of S satisfying the given conditions.

Therefore all integers n satisfying the given conditions are even integers with $n \geqslant 4$.

