POW 2019-15

2016 \qquad Chae Jiseok

October 8, 2019

Consider the case where $n=1$. Even without any assumptions, a 1×1 matrix always has [1] as its eigenvector. Hence the statement holds.

Now consider the case where $n=2$. Assume that A and B are Hermitian matrices such that $A B-B A$ is singular. Then $A B-B A$ has a 0 as one of its eigenvalues. However, note that

$$
\operatorname{tr}(A B-B A)=\operatorname{tr}(A B-B A)=\operatorname{tr}(A B)-\operatorname{tr}(B A)=0
$$

where $\operatorname{tr}(A B-B A)$ should be the sum of the two eigenvalues of $A B-B A$. Therefore the only eigenvalue of $A B-B A$ is 0 , with algebraic multiplicity 2 . It follows that $A B-B A=O$, that is, $A B=B A$ always. Now let λ be a eigenvalue of A, and let W_{λ} be the eigenspace of A corresponding to λ. Then for any $\nu_{\lambda} \in W_{\lambda}$, we have

$$
A\left(B v_{\lambda}\right)=B\left(A v_{\lambda}\right)=B\left(\lambda v_{\lambda}\right)=\lambda\left(B v_{\lambda}\right)
$$

so W_{λ} is a B-invariant subspace of \mathbb{C}^{2}. Thus considering $\left.B\right|_{W_{\lambda}}: W_{\lambda} \rightarrow W_{\lambda}$, there must exist an eigenvector $w \in W_{\lambda}$ of $\left.B\right|_{W_{\lambda}}$, which also becomes an eigenvector of B. Here, from $w \in W_{\lambda}, w$ is also an eigenvector of A with eigenvalue λ. Therefore A and B have a common eigenvector, namely w. Hence the statement holds.

On the other hand, suppose $n \geqslant 3$. Let A and B to be

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & n
\end{array}\right], B=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

then by simple calculation we have

$$
A B-B A=\left[\begin{array}{ccccc}
0 & -1 & -2 & \cdots & -(n-1) \\
1 & 0 & 0 & \cdots & 0 \\
2 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n-1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

so $A B-B A$ is clearly singular. However the eigenvectors of A are the standard basis vectors $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ while for any $i=1,2, \cdots, n$ we can see by some simple calculation that $B e_{i}$ is never a multiple of e_{i}. This shows that an eigenvector of A cannot also be an eigenvector of B, that is, A and B cannot have a common eigenvector.

Therefore the only positive integers such that the statement

$$
A B-B A \text { singular } \Rightarrow A \text { and } B \text { have a common eigenvector }
$$

for $n \times n$ Hermitian matrices A and B holds are 1 and 2 .

