POW 2019-12: Groups Generated by two homeomorphisms of the real line

2015**** Dongryul Kim*

September 26, 2019

Problem 1. Let I, J be connected open intervals such that $I \cap J$ is a nonempty proper sub-interval of both I and J.

Let $f, g \in \mathrm{Homeo}^{+}(\mathbb{R})$ such that the set of points of \mathbb{R} which are not fixed by $f(g$, resp) is precisely I (J, resp.).

Show that for larg enough integer n, the group generated by f^{n}, g^{n} is isomorphic to the group with the following presentation

$$
\left\langle a, b \mid\left[a b^{-1}, a^{-1} b a\right]=\left[a b^{-1}, a^{-2} b a^{2}\right]=i d\right\rangle .
$$

Solution. From now on, let me denote $G=\left\langle a, b \mid\left[a b^{-1}, a^{-1} b a\right]=\left[a b^{-1}, a^{-2} b a^{2}\right]=i d\right\rangle$. This is a group presentation for Thompson group, which is defined using some piecewise linear functions and has the following well-known property.

Lemma 1. For any $1 \neq N \unlhd G, N$ contains all commutators of G.
It implies that every proper quotient of G is abelian. In addition, replacing a and b by $u=b a^{-1}$ and $v=b^{-1}$, we have an equivalent presentation for G as follows:

Lemma 2.

$$
G=\left\langle u, v \mid\left[u, v u v(v u)^{-1}\right]=\left[u,(v u)^{2} v(v u)^{-2}\right]=1\right\rangle
$$

Together with these facts, let me prove the main result. Let $I=(x, z)$ and $J=$ (y, w). we may assume that $x<y<z<w$. Since there is no fixed point of f and g in I and J, respectively, we may assume that $f(y)>y$ and $g(z)>z$ by taking inverse if it is necessary.(Here, note that taking inverse does not affect on the finally generated

[^0]group.) Again from the dynamics of f and g, iteration of g on y converges to w, which implies that
$$
z \leq\left(g^{n} \circ f\right)(y) \leq\left(g^{n} \circ f^{n}\right)(y) \leq\left(g^{2 n} \circ f^{n}\right)(y)
$$

Now what I want to claim is $\left\langle f^{n}, g^{n}\right\rangle \cong G$. Note that

$$
\begin{gathered}
I \cap\left(g^{n} \circ f^{n}\right)(J)=(x, z) \cap\left(\left(g^{n} \circ f^{n}\right)(y), w\right)=\emptyset \\
I \cap\left(g^{n} \circ f^{n}\right)^{2}(J)=(x, z) \cap\left(\left(g^{2 n} \circ f^{n}\right)(y), w\right)=\emptyset
\end{gathered}
$$

Calculating on each I and J based on the first row of above notification,

$$
f^{n} \circ\left(g^{n} \circ f^{n} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right)=\left(g^{n} \circ f^{n} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right) \circ f^{n}
$$

For instance, $f^{n} \circ\left(g^{n} \circ f^{n} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right)(I)=f^{n} \circ\left(g^{n} \circ f^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right)(I)=f^{n}(I)$ and $\left(g^{n} \circ f^{n} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right) \circ f^{n}(I)=\left(g^{n} \circ f^{n} \circ\left(g^{n} \circ f^{n}\right)^{-1}\right) \circ f^{n}(I)=f^{n}(I)$, which are equal. Similarly, second row of above implies that

$$
f^{n} \circ\left(\left(g^{n} \circ f^{n}\right)^{2} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-2}\right)=\left(\left(g^{n} \circ f^{n}\right)^{2} \circ g^{n} \circ\left(g^{n} \circ f^{n}\right)^{-2}\right) \circ f^{n} .
$$

Combining with Lemma 2, we get a well-defined surjective homomorphism

$$
\varphi: G \rightarrow\left\langle f^{n}, g^{n}\right\rangle
$$

defined by $\varphi(u)=f^{n}$ and $\varphi(v)=g^{n}$. So the image $\left\langle f^{n}, g^{n}\right\rangle$ is isomorphic to some quotient of G. However,

$$
\begin{gathered}
\left(g^{n} \circ f^{n}\right)(J)=\left(\left(g^{n} \circ f^{n}\right)(y), w\right) \\
\left(f^{n} \circ g^{n}\right)(J)=f^{n}(J)=\left(f^{n}(y), f^{n}(w)\right)
\end{gathered}
$$

so $\left\langle f^{n}, g^{n}\right\rangle$ is non-abelian. From the Lemma 1 , we conclude that φ is actually an isomorphism and

$$
G \cong\left\langle f^{n}, g^{n}\right\rangle
$$

[^0]: *kdryu1927@kaist.ac.kr

