KAIST Math POW 2019-08

 2015^{****} Jeonghwan, Lee

May 13, 2019

Problem 8.

Let G be a group acting by isometries on a proper geodesic metric space X. Here, X being proper means that every closed bounded subset of X is compact. Suppose this action is proper and co-compact. Here, the action is said to be proper if for all compact subsets $K \subseteq X$, the set

$$\{g \in G : g \cdot K \cap K \neq \emptyset\}.$$

is finite. The quotient space X/G is obtained from X by identifying any two points x, y in X if and only if there exists $g \in G$ such that $g \cdot x = y$, and equipped with the *quotient topology*. Then, the action of G on X is said to be *co-compact* if X/G is compact. Under these assumptions, show that G is finitely generated.

Solution.

I want to begin the solution with some basic notions in geometric group theory.

Definition 1.

Let (X, d) be a metric space. We say that a group G acts *isometrically* on X if for every $g \in G$, the map $\phi_g : X \to X$ given by $\phi_g(x) := g \cdot x$ is an isometry on X.

Definition 2.

Let (X, d) be a metric space.

- 1. A path $\gamma: I \to X$, where I is an interval in \mathbb{R} , is called a **geodesic** in X if it is an isometric embedding, *i.e.*, $d(\gamma(t), \gamma(s)) = |t s|$ for all $t, s \in I$.
- 2. (X, d) is called a **geodesic metric space** if for any two points $x, y \in X$, they can be joined by a geodesic in X.
- 3. For any $r \ge 0$, the closed *r*-neighborhood of a point $x \in X$ is the set

$$\mathcal{N}(x,r) := \left\{ y \in X : d(x,y) \le r \right\}.$$

We can also define the *r*-neighborhood of a subset $Q \subseteq X$ as

$$\mathcal{N}(Q,r) := \bigcup_{x \in Q} \mathcal{N}(x,r).$$

- 4. A subset Q of X is r-dense in X if $X = \mathcal{N}(Q, x)$.
- 5. A subset Q of X is **co-bounded** in X if it is r-dense in X for some $r \ge 0$.

It is necessary to characterize the quotient topology on X/G to analyze the co-compactness of the action of G on X more easily!

Proposition 1.

Let (X, d) be a proper metric space and suppose a group G acts isometrically and properly on X. Then, the quotient space X/G is metrizable.

Proof.

Define $d_Q: X/G \times X/G \to [0, \infty)$ by

$$d_Q(G \cdot x, G \cdot y) := \min \{ d(p, q) : p \in G \cdot x, q \in G \cdot y \} = \min \{ d(x, g \cdot y) : g \in G \}$$

Note that the second equality comes from the assumption that G acts on X isometrically and d_Q is indeed a metric on G/X. Since G acts properly on X, there are only finitely many $g \in G$ s.t. $g \cdot \mathcal{N}(x, d(x, y)) \cap \mathcal{N}(x, d(x, y)) \neq \emptyset$ for any fixed $x, y \in X$. Therefore, there are only finitely many $g \in G$ s.t. $d(x, g \cdot y) \leq d(x, y)$ and the minimum min $\{d(x, g \cdot y) : g \in G\}$ is actually attained! Also, it's straightforward that the metric d_Q on X/G induces the quotient topology on X/G.

Now, let's return to our main problem. Suppose that (X, d) is a proper geodesic metric space and a group G acts isometrically, properly and co-compactly on X. Fix any $x \in X$ and we will show that the orbit $G \cdot x$ is co-bounded in X.

Claim 1. Every orbit of G is co-bounded in X.

Proof of Claim 1.

Fix any $x \in X$, $\epsilon > 0$ and consider the orbit $G \cdot x \in X/G$. Also, let's consider an open cover $\mathcal{U} := \left\{ \mathcal{B}_{\epsilon}^{d_Q}(G \cdot x) : x \in X \right\}$ of X/G, where $\mathcal{B}_{\epsilon}^{d_Q}(G \cdot x) := \{G \cdot y \in X/G : d_Q(G \cdot x, G \cdot y) < \epsilon\}$. Since X/G is compact, there exists a finite sub-cover $\left\{ \mathcal{B}_{\epsilon}^{d_Q}(G \cdot x_i) : i \in [n] \right\}$ of \mathcal{U} . Let M := $\sup \left\{ d_Q(G \cdot x_i, G \cdot x_j) : i, j \in [n] \right\} < \infty$ and $r := M + 2\epsilon$. For any $G \cdot y \in X/G$, there exist $i, j \in [n]$ $s.t. \ G \cdot x \in \mathcal{B}_{\epsilon}^{d_Q}(G \cdot x_i)$ and $G \cdot y \in \mathcal{B}_{\epsilon}^{d_Q}(G \cdot x_j)$. Then,

$$d_Q(G \cdot x, G \cdot y) \le d_Q(G \cdot x, G \cdot x_i) + d_Q(G \cdot x_i, G \cdot x_j) + d_Q(G \cdot x_j, G \cdot y) < \epsilon + M + \epsilon = r.$$

Thus, for any $y \in X$, $d_Q(G \cdot x, G \cdot y) = \min \{d(y, g \cdot x) : g \in G\} < r$ and therefore $y \in \mathcal{B}_r^d(g \cdot y) = \{z \in X : d(z, g \cdot y) < r\}$ for some $g \in G$. Hence, $X = \mathcal{N}(G \cdot x, r)$, *i.e.*, the orbit $G \cdot x$ is r-dense in X. This completes the proof of Claim 1.

By the Claim 1, the orbit $G \cdot x$ is r-dense in X for some $r \ge 0$. Let k := 2r + 1 > 0 and let us construct a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ as follows. :

- $\mathcal{V} := G.$
- $\mathcal{E} := \left\{ \{g, h\} \in {G \choose 2} : d(g \cdot x, h \cdot x) \le k \right\}.$

For any $g, h \in G$, let $L := d(g \cdot x, h \cdot x)$ and $\gamma : [0, L] \to X$ be a geodesic in X with $\gamma(0) = g \cdot x$ and $\gamma(1) = h \cdot x$. Also, we let $n := [L] + 1 \in \mathbb{N}$ and note that $\frac{L}{n} < 1$. If we let $x_i := \gamma(\frac{L}{n}i)$ for $i = 0, 1, \dots, n$, then $d(x_i, x_{i+1}) = d(\gamma(\frac{L}{n}i), \gamma(\frac{L}{n}(i+1))) = |\frac{L}{n}i - \frac{L}{n}(i+1)| = \frac{L}{n}$ for all $i = 0, 1, \dots, n-1$. Since the orbit $G \cdot x$ is r-dense in X, for each $i \in [n-1]$, there exists $g_i \in G$ s.t. $d(x_i, g_i \cdot x) \leq r$ and set $g_0 := g$ and $g_n := h$. Then, we can observe that for each $i = 0, 1, \dots, n-1$,

$$d(g_i \cdot x, g_{i+1} \cdot x) \le d(g_i \cdot x, x_i) + d(x_i, x_{i+1}) + d(x_{i+1}, g_{i+1} \cdot x) < r+1 + r = k.$$

This yields that $\{g_i, g_{i+1}\} \in \mathcal{E}$ for all $i = 0, 1, \dots, n-1$. Now, it's clear that $g = g_0, g_1, \dots, g_n = h$ is a path from g to h in \mathcal{G} . Therefore, as our intuition (draw a picture and remind the definition of r-denseness..), the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is connected!

Now, let's prove that the group G is finitely generated. Let $S := \{g \in G : d(x, g \cdot x) \le k\}$.

Claim 2. The set S is finite.

Proof of Claim 2.

Since X is a proper metric space, the closed k-neighborhood of $x, \mathcal{N}(x, k)$, is compact. Because the action of G on X is proper, the set $T := \{g \in G : g \cdot \mathcal{N}(x, k) \cap \mathcal{N}(x, k) \neq \emptyset\}$ is finite. Since S is a subset of T, the set S is also finite.

Then, we can observe that S is symmetric, i.e., for any $g \in G$, $g \in S$ if and only if $g^{-1} \in S$. (: G acts on X isometrically.) To show that the group G is finitely generated, it suffices to prove that the set S generates G.

Claim 3. $G = \langle S \rangle$, *i.e.*, S generates G.

Proof of Claim 3.

Note that for any $g, h \in G$, $\{g, h\} \in \mathcal{E}$ iff $gh^{-1} \in S$, since G acts on X isometrically. From the connected-ness of the graph \mathcal{G} , there exists a path in \mathcal{G} , $1_G = g_0, g_1, \cdots, g_n = g$ from 1_G to g, where g is any fixed element of G.

$$\therefore g = g_n = (g_n g_{n-1}^{-1}) \cdot (g_{n-1} g_{n-2}^{-1}) \cdot \cdots \cdot (g_2 g_1^{-1}) (g_1 g_0^{-1}).$$

Since $g_{i+1}g_i^{-1} \in S$ for all $i = 0, 1, \dots, n-1, g \in \langle S \rangle$. This yields $G = \langle S \rangle$.

Hence, if (X, d) is a *proper* geodesic metric space and G is a group that acts on X isometrically, properly, and co-compactly, then G is finitely generated.

Remark.

The statement of this problem is a *well-known* result in the field of *geometric group theory*, which is called the **Švarc-Milnor Lemma**. Furthermore, if Σ is any finite generating set of Gand $x \in X$ is any point, then it can be shown that the *orbit map* $\varphi : (G, d_{\Sigma}) \to (X, d)$ given by $\varphi(g) := g \cdot x$ is a *quasi-isometry*. Here, d_{Σ} is the word metric on G corresponding to Σ .