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There are several available proofs. (In proofs shown below, many integrals are defined

improperly or as the Lebesgue integral without explicit notations, and € and € are assumed

to be a (small) positive real. Also, Lemmas are gathered at the end of this document.)

Proof 1 (Everyone might have tried this). Let

w/2
I :/ log (2 cos x) dx.
0

Note that cos (g — x) = sinz, hence substituting with t = § — x, we have

I= /7:/)2 log <2 cos (g - t)) (=1)dt = /OW/2 log (2sint) dt.

Therefore,

2[=1+1
w/2 w/2
:/ log (2cos z) dx +/ log (2sinx) dx
0 0

/2
:/ log (4sinz cosx) dx
0

w/2
= / log (2sin (2z)) dx
0

1

= 2/ log (2sinu) du (u = 2x)
0

Note that sinu is symmetric about the vertical line x = 5. Hence

1 7 w/2
2/ log (2sinu) du = / log (2sinu) du = 1.
0 0

Because 21 =1, we get I = 0.



Proof 2 (With a product of sines). We have (). By Lemma 1,

_ s Jm
1= hm/ log (2sinx) dx = nh_}n;o Zlog (2 sin < - )) .

Also, there is a famous identity (Lemma 2):

n—1 .
. gm n
sin | — = .
H ( n > 2n71
j=1

Therefore,
P, g
I = nl;rgo - Z log (2 sin <n>>
j=1
n—1 '71'
_ n n—1
_nh_{gonlog 2 Hsm(n>

7j=1

= lim Elogn:O. g

n—oo N

Furthermore, there is another way to represent this integral. Note that log |cos z| is

an antiderivative of tanx, and cosx is positive on [0, 5= 5]. Thus,

T w/2—e T
log (cosz) = —/ tant dt, oI =lim (log2 —/ tantdt> dx.
0 N0 Jo 0

By exchanging two integral signs',

w/2—¢ T/2—¢ log 2 w/2—¢
I =lim log 2 —/ tantdzr | dt = = %% _im (E — t) tantdt.
eNO Jo t 2 eNO Jo 2
Also, by substituting z = § — ¢, we have
T/2—e - T
Iy = lim (— - t> tant dt = lim/ t cottdt.
e\0 2 eNO J¢

So, it suffices to show I; = (wlog2)/2.

! Tonelli’s theorem works since tant is positive; see, for instance, [1, 2.37].



Proof 3 (Using the Leibniz integral rule).  Define an integral with a parameter £ as

follows:

m/ n- nzx
I(§) _/0 2f(§,37) dx where f(&x) = w.

tanx

Then, we have I(0) = 0 and I(1) = lim¢ ~ I(§) = I1. Using the Leibniz integral rule on
R={(z,y):e<x <% —£ 0<y<a}, since f and

1

3% 16~ e

23

are continuous on a region containing R,

) w/2—€ w/2—€ o
%[ femd= [T FiEad

w/2—¢& 1
:/ ————dux.
e (Etanz)” 4+ 1

Calculating the integral, (0 < & < 1)

(u = tanz)

1 1
——dx = du
/ (Etanz)® 41 / (u2 + 1)(§2u2 +1)
]' . .
2 _1 (/ 242 + 1 du — / 211 du> (partial fraction)

{tan (Etanx) — x

21 +C.
Thus,
o [T/*E _ Stan!(tana) — @ m/2-¢
be | Sewde= SESSEE
_ £tan~! (§tan (g — é)) —¢tan~! (Etane) — s+e+é
= . .

Note that the limit of the above converges uniformly to (é7/2—7/2)/(€2—1) = 7 /(2(£+1))

as €,& — 0. Therefore, we can exchange the limit and the differentiation?:

- ) o w/2—& w/2—&
%&M:$%%L Nwm—ggaf 1§ 2) —%@>

Now, by the fundamental theorem of calculus,

Tloglé+1), . I(1)==log2. O

=5 9

§ ™
I(f)—f(f)—f(o)—/o AC+1)

2See, e.g., [2, Theorem 7.17].



Proof 4 (Using the Riemann—Lebesgue lemma,). By a simple summation of sines

(Lemma 3), we have the following:

cos ((2N + 1)x)
sin x )

N
Z 2sin (2nx) = cotx —

n=0

Thus,

w/2 N w/2 w/2
/ x cotxdr =2 Z/ xsin (2z) + / o (2N + 1)z) dx.
0 /0 0

sinx

Note that
cos ((2N + 1)z)

sinx

= cotx cos (2Nz) — sin (2N x)

whence

/”/2 , C08 (2N +1)x)
0

sin x

w/2 /2
dr = / xcotx cos (2Nz) dx —/ xsin (2Nz) dx.
0 0

Here, the RHS converges to 0 as N — oo by the Riemann—Lebesgue lemma. Conse-

quently,

/2 o pm/2 2 (-1)"'x  7log2
tedr =2 in (2 dx = = . ]
/0 x cot x dx 7;)/0 xsin (2nz) dx Z o 5

n=0

Lemmas

Lemma 1 (convergence of Riemann sums for improper integrals for a monotone func-
tion). Let f be a real-valued monotone function defined on a half-open interval. Suppose,
wlog, f : (0,1] — R is nonnegative and decreasing. (O/w, consider C — f(kx) for an
appropriate constant C' and k.) Suppose further that there is a singularity at x = 0, but f

is Riemann integrable on [c,1] for all 0 < ¢ < 1 and the improper integral is convergent:

1 1
/0 f(x)de = 1{%/ f(z)dx < oo.

Moreover, assume x f(x) — 0 as © \ 0. Then we have:

i;d:) =/01f<x>dx.



Proof. Since f is decreasing,

(k+1)/n
1f<k>2/k f(w)d@if(’f;fl)

n n /n

so that )
— , [k ! 1~ , (kK
— | > > _
F(5)z [ a2y r (1),

which implies

! 1 I k 1,/1

swars i<t (B) < [ a1 ().

1/n n n 1 n 1/n n n

Since f(1)/n and f(1/n)/n tend to 0 by the assumptions, by the squeeze theorem,

hme()—nh_)Igo f(x da:/f

n—oo n

Lemma 2.

Proof. Consider a root of unity ¢ = ¢?27/". Note that

2k 2k 2k k
11— ¢k = ‘1 —cos X 4 isin | = \/2—2(:05—% = 2sin .
n n n n
Note that
121 e k
n—~L __ —
R R e = [1G-¢.
k=1
Evaluating the limit as z — 1,
n—1 n—1 -
n=[[a-¢", n=ph=]]1-c¢=2""sn—.
k=1 k=1 "
Lemma 3. N
2N +1
ZZSin(2mc) = cotx — cos (( . + ):c)
s sin x



Proof. When N = 0, both sides are the same with 0. Also, an identity

cos ((2N — 1)9:).— cos (2N + 1)z)

2sin (2Nzx) =

completes the induction step:

N N-1
> 2sin(2nx) = Y  2sin (2na) + 2sin (2Nx)
n=0 n=0

_ <C0tx ~cos (2N — 1)x)> . <cos (2N — 1)z) — cos (2N + 1):,;))

sinx sinx
cos (2N +1)z)

sinx

O]

=cotx —
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