KAIST POW 2019-01 : Equilateral Polygon

Changki Yun*

March 14, 2019

Problem. Let Π be a closed, equilateral k - gon with area A and perimeter L. Prove the following inequality :

$$\frac{A}{L^2} \le \frac{\cot\left(\pi/k\right)}{4k} \le \frac{1}{4\pi}$$

The right side is relatively simple. Since $\cot \theta < 1/\theta$ for positive θ ,

$$\frac{\cot\left(\pi/k\right)}{4k} < \frac{k}{4k\pi} = \frac{1}{4\pi}.$$

Let's move on to the left side. It can be easily shown that the middle term is the value of A/L^2 when Π is a regular k - gon. So it suffices to prove that A/L^2 is maximized when Π is a regular k - gon. I show the fact that for every non-regular equilateral k-gon Π , there exists an equilateral k-gon Π' with bigger A/L^2 .

- **Case 1.** Π is a triangle. Obviously, an equilateral triangle is regular. So let's assume that Π has at least 4 vertices.
- Case 2. Π is a concave polygon.

Let $C(\Pi)$ be a convex hull of Π . As Π is a concave, there is a side e in $C(\Pi)$ which has no intersection with Π except 2 endpoints. Let make a polygon Π' by reflecting sides of Π respect to e, which belongs between 2 endpoints of e.

In sure, Π' is a simple(not self-intersecting), and equilateral k-gon. And it's obvious that Π' has larger area than Π , without gaining its perimeter.

Case 3. All angles of Π are less or equal than π , but they are not regular.

From the condition, it can be known that there are 4 vertices P, Q, R, S that PQ, QR, RS are sides of Π , and $\angle PQR \neq \angle QRS$. Let's make a new polygon Π' by 'unifying' the $\angle PQR$ and $\angle QRS$. i.e. by making $\Box PQRS$ an isoceles trapezoid. It is trivial that Π' is simple and equilateral. And Π' has bigger area than $\Pi(*)$.

(*) can be shown by the following lemma.

Lemma. Let a, b, c, d be length of 4 sides of a quadrilateral, and α, γ be opposite angles, and K be the area of the quadrilateral. Then the following relation holds.

$$K^{2} = (s-a)(s-b)(s-c)(s-d) - abcd\cos^{2}\left(\frac{\alpha+\gamma}{2}\right). \ (s = \frac{a+b+c+d}{2})$$

^{*}Department of Chemistry, Seoul National University

By Lemma, area of $\Box PQRS$ is maximized when $\alpha + \gamma = \pi$, and it is an isoceles quadrilateral since PQ = RS. Since area of rest of Π without $\Box PQRS$ isn't changed, area of Π' is certainly bigger than area of Π .

Fact. A convex equilateral polygon with regular angles is regular.

By applying this fact on the analysis given above, it can be shown that the value of A/L^2 has a maximum when the equilateral polygon is regular. As mentioned, this proves the left side of the inequality.