POW 2018-23 Game of polynomials

2017 Seokmin Ha

November 27, 2018

Answer : Player 2 has the winning strategy.
Note that player 2 can choose three coefficients of $f(x)$. Player 2's winning strategy is to set coefficient of even degree $\left(c_{2}, c_{4}, c_{6}\right)$ to be zero as much as possible at his/her first two choice. Right before player 2's last choice, We have $f(x)=g(x)+c_{i} x^{i}+c_{j} x^{j}$ where $g(x)$ is a monic polynomial of degree 8 (with all coefficients determined), and $i, j \in[1,7] \cap \mathbb{N}, i \neq j\left(c_{i}, c_{j}\right.$ not determined yet). Because of Player 2's strategy, i and j cannot be even at the same time. Thus, there are two cases.

Case 1: Both i and j are odd

Let $f(x)=g(x)+c_{2 a+1} x^{2 a+1}+c_{2 b+1} x^{2 b+1}$ for $2 a+1,2 b+1 \in[1,7] \cap \mathbb{N}$. Assume $a>b$. Strategy for Player 2 is to set $c_{2 a+1}$ such that $c_{2 a+1}>\frac{g(1)+g(-2) 2^{-(2 b+1)}}{2^{2 a-2 b}-1}$. Let's show that $f(x)$ has real root regardless of Player 1's choice of $c_{2 b+1}$. Note that

$$
\begin{aligned}
f(1) & =g(1)+c_{2 a+1}+c_{2 b+1} \\
f(-2) & =g(-2)-2^{2 a+1} c_{2 a+1}-2^{2 b+1} c_{2 b+1}
\end{aligned}
$$

From $c_{2 a+1}>\frac{g(1)+g(-2) 2^{-(2 b+1)}}{2^{2 a-2 b}-1}$, we have $-g(1)-c_{2 a+1}>g(-2) 2^{-(2 b+1)}-2^{2 a-2 b} c_{2 a+1}$ and

$$
\left(-\infty, g(-2) 2^{-(2 b+1)}-2^{2 a-2 b} c_{2 a+1}\right) \cap\left(-g(1)-c_{2 a+1}, \infty\right)=\emptyset .
$$

Thus, there is no $c_{2 b+1}$ such that $g(-2) 2^{-(2 b+1)}-2^{2 a-2 b} c_{2 a+1}-c_{2 b+1}=2^{-(2 b+1)} f(-2)>0$ and $c_{2 b+1}-\left(-g(1)-c_{2 a+1}\right)=f(1)>0$. This means $f(-2) \leq 0$ or $f(1) \leq 0$ regardless of Player 1's choice of $c_{2 b+1}$. Also, since f is monic, $\lim _{x \rightarrow \infty} f(x)=\infty$. Thus, there exists $t>1$ such that $f(t)>0$. Since f is continuous, f has real root in interval $[-2, t](\because[1, t] \subset[-2, t])$ by Intermediate Value Theorem.

Case 2: One of i, j is odd and one is even

Let $f(x)=g(x)+c_{2 a+1} x^{2 a+1}+c_{2 b} x^{2 b}$ for $2 a+1,2 b \in[1,7] \cap \mathbb{N}$. Strategy for Player 2 is to set $c_{2 b}$ such that $c_{2 b}<-\frac{g(1)+g(-1)}{2}$. Let's show that $f(x)$ has real root regardless of Player 1's choice of $c_{2 a+1}$. Note that

$$
\begin{aligned}
f(1) & =g(1)+c_{2 a+1}+c_{2 b} \\
f(-1) & =g(-1)-c_{2 a+1}+c_{2 b}
\end{aligned}
$$

From $c_{2 b}<-\frac{g(1)+g(-1)}{2}$, we have $c_{2 b}+g(-1)<-c_{2 b}-g(1)$ and

$$
\left(-\infty, c_{2 b}+g(-1)\right) \cap\left(-c_{2 b}-g(1), \infty\right)=\emptyset
$$

Thus, there is no $c_{2 a+1}$ such that $c_{2 b}+g(-1)-c_{2 a+1}=f(-1)>0$ and $c_{2 a+1}-\left(-c_{2 b}-g(1)\right)=f(1)>0$. This means $f(-1) \leq 0$ or $f(1) \leq 0$ regardless of Player 1's choice of $c_{2 a+1}$. Also, since f is monic, $\lim _{x \rightarrow \infty} f(x)=\infty$. Thus, there exists $t>1$ such that $f(t)>0$. Since f is continuous, f has real root in interval $[-1, t](\because[1, t] \subset[-1, t])$ by Intermediate Value Theorem.

Therefore, Player 2 can always win the game.

