POW 2018-21

2016 \qquad Chae Jiseok

November 13, 2018

We claim that $C=\frac{1}{2 n^{2}}$ is the only constant that suffices the inequality

$$
\frac{C}{a_{n}} \sum_{1 \leqslant i<j \leqslant n}\left(a_{i}-a_{j}\right)^{2} \leqslant \frac{a_{1}+a_{2}+\cdots a_{n}}{n}-\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leqslant \frac{C}{a_{1}} \sum_{1 \leqslant i<j \leqslant n}\left(a_{i}-a_{j}\right)^{2}
$$

First we show that the inequality actually holds for $C=\frac{1}{2 n^{2}}$. Observe that

$$
\frac{1}{n^{2}} \sum_{1 \leqslant i<j \leqslant n}\left(a_{i}-a_{j}\right)^{2}=\frac{1}{n^{2}}\left(n \sum_{i=1}^{n} a_{i}{ }^{2}-\left(\sum_{i=1}^{n} a_{i}\right)^{2}\right)=\sum_{i=1}^{n} \frac{a_{i}^{2}}{n}-\left(\sum_{i=1}^{n} \frac{a_{i}}{n}\right)^{2}
$$

So we will prove the following stronger inequality; for positive reals $p_{1}, p_{2}, \cdots, p_{n}$ satisfying $\sum_{i=1}^{n} p_{i}=1$,

$$
\begin{equation*}
\frac{1}{2 a_{n}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) \leqslant \sum_{i=1}^{n} p_{i} a_{i}-\prod_{i=1}^{n} a_{i} p_{i} \leqslant \frac{1}{2 a_{1}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) \tag{*}
\end{equation*}
$$

where the inequality given from the problem is the case where $p_{1}=p_{2}=\cdots=p_{n}=\frac{1}{n}$. We use induction on n. The inequality $\left({ }^{*}\right)$ is clear for $n=1$, because all terms become 0 in this case. So let $n \geqslant 2$. Consider the left inequality of $\left(^{*}\right)$. Fix $p_{1}, p_{2}, \cdots, p_{n}$ and $a_{1}, a_{2}, \cdots, a_{n-1}$. Varying a_{n} over the interval $\left[a_{n-1}, \infty\right)$ we will find a_{n} which minimizes

$$
f\left(a_{n}\right):=\sum_{i=1}^{n} p_{i} a_{i}-\prod_{i=1}^{n} a_{i}^{p_{i}}-\frac{1}{2 a_{n}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) .
$$

Differentiating we get

$$
\begin{aligned}
\frac{d f}{d a_{n}} & =p_{n}-\frac{p_{n}}{a_{n}} \prod_{i=1}^{n} a_{i} p_{i}-\frac{1}{2 a_{n}^{2}}\left(a_{n}\left(2 p_{n} a_{n}-2 p_{n} \sum_{i=1}^{n} p_{i} a_{i}\right)-\sum_{i=1}^{n} p_{i} a_{i}^{2}+\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) \\
& =p_{n}-\frac{p_{n}}{a_{n}} \prod_{i=1}^{n} a_{i} p_{i}-p_{n}+\frac{p_{n}}{a_{n}} \sum_{i=1}^{n} p_{i} a_{i}+\frac{1}{2 a_{n}^{2}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) \\
& =\frac{p_{n}}{a_{n}}\left(\sum_{i=1}^{n} p_{i} a_{i}-\prod_{i=1}^{n} a_{i}{ }^{p_{i}}\right)+\frac{1}{2 a_{n}^{2}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right) .
\end{aligned}
$$

The first term is positive by the weighted arithmetic-geometric mean inequality, and the second term is positive as it has the form of a variance of a random variable with a distribution of having a_{i} as an outcome with probability p_{i}. Hence $\frac{d f}{d a_{n}} \geqslant 0$, and f is increasing. Therefore f is minimized when $a_{n}=a_{n-1}$. Here, letting $a_{n}=a_{n-1}$, the left inequality of $\left({ }^{*}\right)$ reduces to the case where there are $n-1$ variables, a_{1} to a_{n-1}, with each in correspondence with p_{1}, p_{2}, \cdots, p_{n-2}, and $p_{n-1}+p_{n}$. By induction hypothesis, the minimum of f is nonnegative, which proves the left inequality of $\left({ }^{*}\right)$.

For the right inequality of $\left({ }^{*}\right)$, fix $p_{1}, p_{2}, \cdots, p_{n}$ and $a_{2}, \cdots, a_{n-1}, a_{n}$ and consider

$$
g\left(a_{1}\right):=\sum_{i=1}^{n} p_{i} a_{i}-\prod_{i=1}^{n} a_{i} p_{i}-\frac{1}{2 a_{1}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right)
$$

varying a_{1} in the interval $\left(0, a_{2}\right]$. Similar calculation and logic can be applied to show that

$$
\frac{d g}{d a_{1}}=\frac{p_{n}}{a_{1}}\left(\sum_{i=1}^{n} p_{i} a_{i}-\prod_{i=1}^{n} a_{i}{ }^{p_{i}}\right)+\frac{1}{2 a_{1}^{2}}\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2}\right)
$$

is also nonnegative, so g is maximized when $a_{1}=a_{2}$. We can again reduce the inequality to the case where there are $n-1$ variables, a_{2} to a_{n}, with each in correspondence with $p_{1}+p_{2}, p_{3}$, \cdots, p_{n}. Then by the induction hypothesis, the maximum of g is nonpositive, which proves the right inequality of $\left({ }^{*}\right)$.

We have shown that $\left({ }^{*}\right)$ holds for $C=\frac{1}{2 n^{2}}$. We show that the bound given by $C=\frac{1}{2 n^{2}}$ is tight. To show that the lower bound is tight, fix $a_{1}=x$ for some positive number x and let $a_{2}=\cdots=a_{n-1}=x$. Let $a_{n}=y$ then the left inequality becomes

$$
\begin{equation*}
\frac{C}{y}\left(n(n-1) x^{2}+n y^{2}-((n-1) x+y)^{2}\right) \leqslant \frac{n-1}{n} x+y-x^{\frac{n-1}{n}} y^{\frac{1}{n}} \tag{}
\end{equation*}
$$

which gives us

$$
C \leqslant \frac{\frac{n-1}{n} x y+\frac{1}{n} y^{2}-x^{\frac{n-1}{n}} y^{\frac{1}{n}}}{(n-1)^{2} x^{2}-2(n-1) x y+(n-1) y^{2}}
$$

Taking limit on the right hand side where y tends to x and applying L'Hôpital's rule twice we get $C \leqslant \frac{1}{2 n^{2}}$. On the other hand, for the upper bound, fix $a_{n}=x$ for some positive number x and let $a_{n}=a_{n-1}=\cdots=a_{2}$. Let $a_{1}=y$ then the right inequality becomes exactly $\left({ }^{* *}\right)$ where the inequality sign is reversed. Also letting y tend to x here we get $C \geqslant \frac{1}{2 n^{2}}$. Therefore we conclude that if C exists then it must be $\frac{1}{2 n^{2}}$, and the bound given by $C=\frac{1}{2 n^{2}}$ is tight. This also shows that C cannot be independent from n.

