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We claim that C = 21? is the only constant that suffices the inequality
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First we show that the inequality actually holds for C = 71. Observe that
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So we will prove the following stronger inequality; for positive reals p1,p2,- -, pn satisfying
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where the inequality given from the problem is the case where p; =p; =+ = pn = 1. We use
induction on n. The inequality (*) is clear for n = 1, because all terms become 0 in this case. So
letn > 2. Consider the left inequality of (*). Fix p1,p2,--- ,pnand aj,az, -+, an—1. Varying an
over the interval [a,_1, 00) we will find a,, which minimizes
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Differentiating we get
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The first term is positive by the weighted arithmetic-geometric mean inequality, and the second
term is positive as it has the form of a variance of a random variable with a distribution of
having a; as an outcome with probability p;. Hence -3 > 0, and f is increasing. Therefore f is
minimized when a,, = an_1. Here, letting an, = an_1, “the left inequality of (*) reduces to the
case where there are n — 1 variables, a; to a1, with each in correspondence with py, p2, - -+,
Pn—2, and pn—1 + pn. By induction hypothesis, the minimum of f is nonnegative, which proves
the left inequality of (¥).



For the right inequality of (*), fix p1,p2,--- ,pnand a2, -, an—_1, an and consider
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varying a; in the interval (0, a,]. Similar calculation and logic can be applied to show that
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is also nonnegative, so g is maximized when a; = a,. We can again reduce the inequality to the
case where there are n — 1 variables, a, to a,, with each in correspondence with py + p2, p3,
-++, pn. Then by the induction hypothesis, the maximum of g is nonpositive, which proves the
right inequality of (*).

We have shown that (*) holds for C = 51;. We show that the bound given by C = 15 is
tight. To show that the lower bound is tight, fix a; = x for some positive number x and let
a; = -+ = an_1 = X. Let a, =y then the left inequality becomes
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Taking limit on the right hand side where y tends to x and applying L'Hépital’s rule twice we
get C < 5. On the other hand, for the upper bound, fix a,, = x for some positive number x and
let an, = an—1 = --- = ay. Let a1 =y then the right inequality becomes exactly (**) where the
inequality sign is reversed. Also letting y tend to x here we get C > 21? Therefore we conclude
that if C exists then it must be 515, and the bound given by C = 51 is tight. This also shows
that C cannot be independent from n.



