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We claim that C = 1
2n2 is the only constant that suffices the inequality
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First we show that the inequality actually holds for C = 1
2n2 . Observe that
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So we will prove the following stronger inequality; for positive reals p1,p2, · · · ,pn satisfying∑n
i=1 pi = 1,
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where the inequality given from the problem is the case where p1 = p2 = · · · = pn = 1
n
. We use

induction on n. The inequality (*) is clear for n = 1, because all terms become 0 in this case. So
let n > 2. Consider the left inequality of (*). Fix p1,p2, · · · ,pn and a1,a2, · · · ,an−1. Varying an

over the interval [an−1,∞)we will find an which minimizes
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Differentiating we get
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The first term is positive by the weighted arithmetic-geometric mean inequality, and the second
term is positive as it has the form of a variance of a random variable with a distribution of
having ai as an outcome with probability pi. Hence df

dan
> 0, and f is increasing. Therefore f is

minimized when an = an−1. Here, letting an = an−1, the left inequality of (*) reduces to the
case where there are n − 1 variables, a1 to an−1, with each in correspondence with p1, p2, · · · ,
pn−2, and pn−1 + pn. By induction hypothesis, the minimum of f is nonnegative, which proves
the left inequality of (*).
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For the right inequality of (*), fix p1,p2, · · · ,pn and a2, · · · ,an−1,an and consider
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varying a1 in the interval (0,a2]. Similar calculation and logic can be applied to show that
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is also nonnegative, so g is maximized when a1 = a2. We can again reduce the inequality to the
case where there are n − 1 variables, a2 to an, with each in correspondence with p1 + p2, p3,
· · · , pn. Then by the induction hypothesis, the maximum of g is nonpositive, which proves the
right inequality of (*).

We have shown that (*) holds for C = 1
2n2 . We show that the bound given by C = 1

2n2 is
tight. To show that the lower bound is tight, fix a1 = x for some positive number x and let
a2 = · · · = an−1 = x. Let an = y then the left inequality becomes
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Taking limit on the right hand side where y tends to x and applying L’Hôpital’s rule twice we
getC 6 1

2n2 . On the other hand, for the upper bound, fix an = x for some positive number x and
let an = an−1 = · · · = a2. Let a1 = y then the right inequality becomes exactly (**) where the
inequality sign is reversed. Also letting y tend to x here we get C > 1

2n2 . Therefore we conclude
that if C exists then it must be 1

2n2 , and the bound given by C = 1
2n2 is tight. This also shows

that C cannot be independent from n.
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