POW 2018-20 Almost Linear Function

2017 Seokmin Ha

November 4, 2018

The answer is false.

Consider \mathbb{R} as a vector space over \mathbb{Q} . Assuming the Axiom of Choice, we can consider the basis \mathcal{B} . Fix $\alpha, \beta \in \mathcal{B}$ such that $\alpha \neq \beta$ and consider the function $\varphi : \mathcal{B} \to \mathbb{R}$ satisfying $\varphi(\alpha) = 0, \varphi(\beta) = 1$. We can extend this function to $f : \mathbb{R} \to \mathbb{R}$ as following:

For any $x \in \mathbb{R} \setminus \{0\}$, there exists $n \in \mathbb{N}, b_1, b_2, \cdots, b_n \in \mathcal{B}, q_1, q_2, \cdots, q_n \in \mathbb{Q} \setminus \{0\}$ such that

$$x = q_1 b_1 + \dots + q_n b_n \tag{1}$$

Define

$$f(x) := q_1\varphi(b_1) + q_2\varphi(b_2) + \dots + q_n\varphi(b_n)$$

Set f(0) = 0. Since the expression (1) is unique(since \mathcal{B} is a basis and q_i 's are nonzero), f is well-defined. For any $x, y \in \mathbb{R}$, there exists $b_1, b_2, \dots, b_m \in \mathcal{B}, q_1, q_2 \dots, q_m, r_1, r_2, \dots, r_m \in \mathbb{Q}$ such that

$$x = q_1 b_1 + \dots + q_m b_m$$
$$y = r_1 b_1 + \dots + r_m b_m$$

where $\{b_1, \dots, b_m\}$ is a set of elements in \mathcal{B} used in expressing x or y. Then,

$$f(x+y) = f((q_1+r_1)b_1 + \dots + (q_m+r_m)b_m) = (q_1+r_1)\varphi(b_1) + (q_2+r_2)\varphi(b_2) + \dots + (q_m+r_m)\varphi(b_m)$$

= $(q_1\varphi(b_1) + q_2\varphi(b_2) + \dots + q_m\varphi(b_m)) + (r_1\varphi(b_1) + r_2\varphi(b_2) + \dots + r_m\varphi(b_m))$
= $f(x) + f(y)$

Thus, f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Also, f(nx) = nf(x) for all $n \in \mathbb{N}, x \in \mathbb{R}$ by induction. Suppose there exists $c \in \mathbb{R}$ such that $|f(x) - cx| \le 1$ for all $x \in \mathbb{R}$. Then, for all $b \in \mathcal{B}$ and $n \in \mathbb{N}$,

$$|f(nb) - c \cdot nb| = |nf(b) - ncb| = n|f(b) - cb| \le 1$$

Thus,

$$0 \le |f(b) - cb| \le \frac{1}{n}$$
 for all $n \in \mathbb{N}$.

Therefore, f(b) = cb for all $b \in \mathcal{B}$. Then, $f(\alpha) = \varphi(\alpha) = 0 = c\alpha$ and $f(\beta) = \varphi(\beta) = 1 = c\beta$. Since $\alpha \in \mathcal{B}, \alpha \neq 0$. Thus, c = 0 and $1 = c\beta = 0$. This is a contradiction.

Remark 1. The given statement is false even if we change all the 1's in the statement into any fixed number $\epsilon > 0$ by same argument.