POW 2018-20 Almost Linear Function

2017 Seokmin Ha

November 4, 2018

The answer is false.
Consider \mathbb{R} as a vector space over \mathbb{Q}. Assuming the Axiom of Choice, we can consider the basis \mathcal{B}. Fix $\alpha, \beta \in \mathcal{B}$ such that $\alpha \neq \beta$ and consider the function $\varphi: \mathcal{B} \rightarrow \mathbb{R}$ satisfying $\varphi(\alpha)=0, \varphi(\beta)=1$.
We can extend this function to $f: \mathbb{R} \rightarrow \mathbb{R}$ as following:
For any $x \in \mathbb{R} \backslash\{0\}$, there exists $n \in \mathbb{N}, b_{1}, b_{2}, \cdots, b_{n} \in \mathcal{B}, q_{1}, q_{2} \cdots, q_{n} \in \mathbb{Q} \backslash\{0\}$ such that

$$
\begin{equation*}
x=q_{1} b_{1}+\cdots+q_{n} b_{n} \tag{1}
\end{equation*}
$$

Define

$$
f(x):=q_{1} \varphi\left(b_{1}\right)+q_{2} \varphi\left(b_{2}\right)+\cdots+q_{n} \varphi\left(b_{n}\right) .
$$

Set $f(0)=0$. Since the expression (1) is unique(since \mathcal{B} is a basis and q_{i} 's are nonzero), f is well-defined. For any $x, y \in \mathbb{R}$, there exists $b_{1}, b_{2}, \cdots, b_{m} \in \mathcal{B}, q_{1}, q_{2} \cdots, q_{m}, r_{1}, r_{2}, \cdots, r_{m} \in \mathbb{Q}$ such that

$$
\begin{aligned}
& x=q_{1} b_{1}+\cdots+q_{m} b_{m} \\
& y=r_{1} b_{1}+\cdots+r_{m} b_{m}
\end{aligned}
$$

where $\left\{b_{1}, \cdots, b_{m}\right\}$ is a set of elements in \mathcal{B} used in expressing x or y. Then,

$$
\begin{aligned}
f(x+y) & =f\left(\left(q_{1}+r_{1}\right) b_{1}+\cdots+\left(q_{m}+r_{m}\right) b_{m}\right)=\left(q_{1}+r_{1}\right) \varphi\left(b_{1}\right)+\left(q_{2}+r_{2}\right) \varphi\left(b_{2}\right)+\cdots+\left(q_{m}+r_{m}\right) \varphi\left(b_{m}\right) \\
& =\left(q_{1} \varphi\left(b_{1}\right)+q_{2} \varphi\left(b_{2}\right)+\cdots+q_{m} \varphi\left(b_{m}\right)\right)+\left(r_{1} \varphi\left(b_{1}\right)+r_{2} \varphi\left(b_{2}\right)+\cdots+r_{m} \varphi\left(b_{m}\right)\right) \\
& =f(x)+f(y)
\end{aligned}
$$

Thus, $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Also, $f(n x)=n f(x)$ for all $n \in \mathbb{N}, x \in \mathbb{R}$ by induction. Suppose there exists $c \in \mathbb{R}$ such that $|f(x)-c x| \leq 1$ for all $x \in \mathbb{R}$. Then, for all $b \in \mathcal{B}$ and $n \in \mathbb{N}$,

$$
|f(n b)-c \cdot n b|=|n f(b)-n c b|=n|f(b)-c b| \leq 1
$$

Thus,

$$
0 \leq|f(b)-c b| \leq \frac{1}{n} \text { for all } n \in \mathbb{N} \text {. }
$$

Therefore, $f(b)=c b$ for all $b \in \mathcal{B}$. Then, $f(\alpha)=\varphi(\alpha)=0=c \alpha$ and $f(\beta)=\varphi(\beta)=1=c \beta$. Since $\alpha \in \mathcal{B}, \alpha \neq 0$. Thus, $c=0$ and $1=c \beta=0$. This is a contradiction.

Remark 1. The given statement is false even if we change all the 1's in the statement into any fixed number $\epsilon>0$ by same argument.

