POW2018-16

DAESEOK LEE

I claim that $m=1-\frac{\sqrt{2}}{2}$ is the minimum.
First, let's prove that $m=1-\frac{\sqrt{2}}{2}$ works. Let $f:[0,1] \rightarrow[0,1]$ be a convex function. f is continuous on $(0,1)$. We may assume that it is also continuous on 0 and 1 , since we can let $f(0):=\sup _{0<\epsilon<1 / 2} \frac{f(1 / 2)-f(\epsilon)}{1 / 2-\epsilon}(0-1 / 2)+f(1 / 2)$ and $f(1):=$ $\sup _{0<\epsilon<1 / 2} \frac{f(1-\epsilon)-f(1 / 2)}{1-\epsilon-1 / 2}(1-1 / 2)+f(1 / 2)$, while the integral doesn't change. Note that for any $a \in[0,1], B(a):=\{x \in[0,1]: f(x) \leq a\}$ is a closed interval if it is nonempty. This is true because $B(a)$ is connected since $f(x) \leq a$ and $f(y) \leq a$ implies $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \leq a$, and $B(a)$ is closed since f is continuous. Thus, we can write $B(a)=[l(a), r(a)]$ for any $a \in R .(l(a):=1$ and $r(a):=0$ when $B(a)=\emptyset)$ The functions l and r are right continuous since $[l(a), r(a)]=B(a)=\bigcap_{b>a} B(b)=\bigcap_{b>a}[l(b), r(b)]=\left[\sup _{b>a} l(b), \inf _{b>a} r(b)\right]=$ $\left[\lim _{b \rightarrow a+} l(b), \lim _{b \rightarrow a+} r(b)\right]$.

Let $c=\inf \{y: r(y)-l(y) \geq 1 / 2\}, a=l(c)$ and $b=r(c)$. Since l and r are right continuous, we have $b-a \geq 1 / 2$. In fact, $b-a=1 / 2$ unless $f(x)=c$ for all $x \in[a, b]$. Suppose $b-a>1 / 2$. Then $\{x: f(x)<c\}=\bigcup_{y<c} B(y) \subseteq$ $\left[\inf _{y<c} l(y), \sup _{y<c} r(y)\right] . \sup _{y<c} r(y)-\inf _{y<c} l(y) \leq 1 / 2$ since for any $y_{1}, y_{2}<c$, $r\left(y_{1}\right)-l\left(y_{2}\right) \leq r\left(\max \left(y_{1}, y_{2}\right)\right)-l\left(\max \left(y_{1}, y_{2}\right)\right)<1 / 2$. Therefore, $\{x: f(x)=c\}=$ $B(c) \backslash\{x: f(x)<c\}$ contains an intervel of nonzero length. This combined with convexity implies $f \geq c$ hence $f-0$ on $B(c) \square$
(1) When $f(x)=c$ for all $x \in[a, b]$

By convexity, we should have

$$
\begin{cases}c \leq f(x) \leq 1+\frac{c-1}{a} x & \text { if } 0 \leq x \leq a \\ f(x)=c & \text { if } a \leq x \leq b \\ c \leq f(x) \leq 1+\frac{1-c}{1-b}(x-1) & \text { if } b \leq x \leq 1\end{cases}
$$

Therefore, $\int_{0}^{1}|f(x)-c| d x \leq \int_{0}^{a}\left(1-c+\frac{c-1}{a} x\right) d x+\int_{b}^{1} 1-c+\frac{1-c}{1-b}(x-1) d x=$ $\frac{a(1-c)}{2}+\frac{(1-b)(1-c)}{2}=\frac{(1-(b-a))(1-c)}{2} \leq 1 / 4<m$
(2) When $b-a=1 / 2$ and $a>0$ and $b<1$

We have $f(a)=f(b)=c$ since otherwise, $B(c)=\{x: f(x) \leq c\}=[a, b]$ should have been larger because of the intermediate value theorem. Then by convexity, we should have

- If $x<a$, then
(a) $c=f(a)=f\left(\frac{b-a}{b-x} x+\frac{a-x}{b-x} b\right) \leq \frac{b-a}{b-x} f(x)+\frac{a-x}{b-x} c$, so $c \leq f(x)$
(b) $f(x)=f\left(\left(1-\frac{x}{a}\right) * 0+\frac{x}{a} * a\right) \leq\left(1-\frac{x}{a}\right) f(0)+\frac{x}{a} f(a) \leq 1+\frac{c-1}{a} x$
- If $a<x<b$, then
(a) $f(x) \leq c$

[^0](b) $c=f(a)=f\left(\left(1-\frac{a}{x}\right) * 0+\frac{a}{x} * x\right) \leq\left(1-\frac{a}{x}\right)+\frac{a}{x} f(x)$, so $1+\frac{c-1}{a} x \leq$ $f(x)$
(c) $c=f(b)=f\left(\frac{1-b}{1-x} * x+\frac{b-x}{1-x} * 1\right) \leq \frac{1-b}{1-x} f(x)+\frac{b-x}{1-x}$, so $1+\frac{1-c}{1-b}(x-$ $1) \leq f(x)$

- if $x>b$, then
(a) $c=f(b)=f\left(\frac{x-b}{x-a} a+\frac{b-a}{x-a} x\right) \leq \frac{x-b}{x-a} c+\frac{b-a}{x-a} f(x)$, so $c \leq f(x)$
(b) $f(x)=f\left(\frac{1-x}{1-b} * b+\frac{x-b}{1-b} * 1\right) \leq \frac{1-x}{1-b} c+\frac{x-b}{1-b}=1+\frac{1-c}{1-b}(x-1)$

Therefore, $\int_{0}^{1}|f(x)-c| d x \leq \int_{0}^{a}\left(1-c+\frac{c-1}{a} x\right) d x+\int_{a}^{b}\left(c-\max \left(0,1+\frac{c-1}{a} x, 1+\right.\right.$ $\left.\left.\frac{1-c}{1-b}(x-1)\right)\right) d x+\int_{b}^{1}\left(1-c+\frac{1-c}{1-b}(x-1)\right) d x$. A simple calculation shows that the RHS attains maximum when $c=1-\frac{\sqrt{2}}{2}$ and the maximum is $m=1-\frac{\sqrt{2}}{2}$.
(3) When $b-a=1 / 2$ and either $a=0$ or $b=1$

Almost the same consideration as the preceding case results in the desired upper bound
The extremal case is obtained when

$$
f(x)= \begin{cases}1-\overline{\sqrt{2}} x & \text { if } x \leq \frac{\overline{\sqrt{2}}}{2} \\ \theta & \text { if } x>\frac{\sqrt{2}}{2}\end{cases}
$$

[^0]: Date: September 23, 2018.

