POW 2018-15

2016 \qquad Chae Jiseok

September 17, 2018

We will call that the solution is trivial for the solution $x_{1}=x_{2}=\cdots=x_{n}=0$.
The Diophantine equation of the case when $n=1$ has only a trivial solution $x_{1}=0$ so we reject this case.

If ($x_{1}, x_{2}, \cdots, x_{n}$) is a solution to the Diophantine equation then for any nonzero integer q, letting $p=\prod_{i=1}^{n} b_{i}$ we can see, by substituting, that ($\left.x_{1} q^{p / b_{1}}, x_{2} q^{p / b_{2}}, \cdots, x_{n} q^{p / b_{n}}\right)$ is also a solution. Therefore showing that the Diophantine equation has a nontrivial solution is sufficient to show that there are infinitely many solutions.

For the case $n=2$ for convenience of notation we will solve the Diophantine equation $a x^{k}+b y^{m}=0$ where k, m are positive integers with $(k, m)=1$, and a, b are nonzero integers. Not both k and m can be even, so we may assume m odd. By multiplying $\operatorname{sgn}(a)$ on both sides we may also assume that a is positive. Furthermore, since m is odd, by substituting $-y$ instead of y if necessary, we may solve the equation $a x^{k}=b y^{m}$ assuming that b is also positive. We claim that there exists a nontrivial solution of the form $(x, y)=\left(a^{\alpha} b^{\beta}, a^{\gamma} b^{\delta}\right)$ where $\alpha, \beta, \gamma, \delta$ are all positive integers. Substituting such form gives us $a^{k \alpha+1} b^{k \beta}=a^{m \gamma} b^{k \delta+1}$. Therefore if $k \alpha+1=m \gamma$ and $k \beta=m \delta+1$ then we are done. By Bézout's Identity we know that there exists an integer solution $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}, \gamma=\gamma^{\prime}, \delta=\delta^{\prime}$ for $k \alpha+1=m \gamma$ and $k \beta=m \delta+1$. Then for any integers s and t we can see that $\alpha=\alpha^{\prime}+m s, \beta=\beta^{\prime}+m t, \gamma=\gamma^{\prime}+k s, \delta=\delta^{\prime}+k t$ is also a solution. Therefore taking s and t sufficiently large we may assume $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ all positive. Then as we observed, $(x, y)=\left(a^{\alpha^{\prime}} b^{\beta^{\prime}}, a^{\gamma^{\prime}} b^{\delta^{\prime}}\right)$ becomes a nontrivial integer solution of the Diophantine equation $a x^{k}=b y^{m}$.

Now consider the case $n>2$. By letting $x_{2}=x_{3}=\cdots=x_{n-1}=0$ the Diophantine equation reduces to the case when $n=2$. Since there exists a nontrivial integer solution for the reduced equation, we conclude that there also exists a nontrivial integer solution for the Diophantine equation $a_{1} x_{1}^{b_{1}}+a_{2} x_{2}^{b_{2}}+\cdots a_{n} x_{n}^{b_{n}}=0$.

Therefore the given Diophantine equation $a_{1} x_{1}^{b_{1}}+a_{2} x_{2}^{b_{2}}+\cdots a_{n} x_{n}^{b_{n}}=0$ has a nontrivial solution whenever $n>1$. As discussed at the beginning, we conclude that the given Diophantine has infinitely many integer solutions.

