POW 2018-05

2016 \qquad Chae Jiseok

March 32, 2018

For convenience we let $p=18 / 38$ and $q=1-p=20 / 38$. For integers $0 \leqslant k \leqslant 40$, let P_{k} be the probability such that the player, having $\$ k$, reaches $\$ 40$ before he goes bankrupt. We see that $P_{0}=0$ since it is the case where the player is bankrupt hence cannot continue gambling, and $P_{40}=1$ since it is the case where the player has already reached his goal. Note that P_{k} only depends on how much money the player has, regardless of how long the player has been playing roulette. Then for integers $1 \leqslant k<40$ we have the following relation

$$
P_{k}=p P_{k+1}+q P_{k-1}
$$

since each time the player bets a dollar, the player will earn $\$ 1$ and become having $\$(k+1)$ with probability p, or lose $\$ 1$ and become having $\$(k-1)$ with probability q. With the observation that $\mathrm{p}+\mathrm{q}=1$ we can rewrite the relation in the following form

$$
(p+q) P_{k}=p P_{k+1}+q P_{k-1} \quad \Rightarrow \quad P_{k+1}-P_{k}=\frac{q}{p}\left(P_{k}-P_{k-1}\right)
$$

Then we can observe that

$$
\begin{aligned}
& P_{2}-P_{1}=\frac{q}{p}\left(P_{1}-P_{0}\right)=\frac{q}{p} P_{1} \\
& P_{3}-P_{2}=\frac{q}{p}\left(P_{2}-P_{1}\right)=\left(\frac{q}{p}\right)^{2} P_{1} \\
& P_{k+1}-P_{k}=\frac{q}{p}\left(P_{k}-P_{k-1}\right)=\left(\frac{q}{p}\right)^{k} P_{1}
\end{aligned}
$$

which, with telescoping sum and geometric series, implies

$$
P_{k}=P_{1}+\sum_{i=1}^{k-1}\left(P_{i+1}-P_{i}\right)=P_{1}+\sum_{i=1}^{k-1}\left(\frac{q}{p}\right)^{i} P_{1}=\sum_{i=0}^{k-1}\left(\frac{q}{p}\right)^{i} P_{1}=\frac{1-(q / p)^{k}}{1-q / p} P_{1} .
$$

Plugging in $k=40$ implies

$$
1=P_{40}=\frac{1-(q / p)^{40}}{1-q / p} P_{1}
$$

hence

$$
\begin{aligned}
P_{20}=\frac{1-(q / p)^{20}}{1-q / p} P_{1}=\frac{1-(q / p)^{20}}{1-q / p} \cdot \frac{1-q / p}{1-(q / p)^{40}} & =\frac{1-(q / p)^{20}}{1-(q / p)^{40}} \\
& =\frac{1-(20 / 18)^{20}}{1-(20 / 18)^{40}}
\end{aligned}
$$

which is by definition the probability of player starting at $\$ 20$ reaching $\$ 40$ without going bankrupt.

