## POW 2018-04

2014**** Lee, Jongwon

The answer is $n+\cos (2 \pi / n)$. Let $\omega=2 \pi / n$. Define $e_{0}, \ldots, e_{n-1} \in \mathbb{C}^{n}$ as

$$
e_{k}=\frac{1}{\sqrt{n}}\left(1, e^{i k \omega}, e^{2 i k \omega}, \ldots, e^{(n-1) i k \omega}\right)
$$

Then, these vectors form an orthonormal basis. Define $c_{0}, \ldots, c_{n-1} \in \mathbb{C}$ as

$$
v:=\left(x_{1}, \ldots, x_{n}\right)=c_{0} e_{0}+\cdots+c_{n-1} e_{n-1}
$$

The first constrains becomes

$$
n=x_{1}+\ldots+x_{n}=\sqrt{n} c_{0} \Longrightarrow c_{0}=\sqrt{n}
$$

since the sum of the components of $e_{k}$ vanishes for $k \neq 0$ and equals $\sqrt{n}$ for $k=0$. The second becomes

$$
\begin{aligned}
& n+1=x_{1}^{2}+\ldots+x_{n}^{2}=(v, v)=\left|c_{0}\right|^{2}+\cdots+\left|c_{n-1}\right|^{2} \\
& \quad \Longrightarrow\left|c_{1}\right|^{2}+\cdots+\left|c_{n-1}\right|^{2}=1
\end{aligned}
$$

where $(-,-)$ denotes the usual inner product in $\mathbb{C}^{n}$. Also, that $x_{1}, \ldots, x_{n} \in \mathbb{R}$ is equivalent to

$$
\begin{aligned}
v=\bar{v} & \Longrightarrow c_{0} e_{0}+\sum_{k=1}^{n-1} c_{k} e_{k}=c_{0} e_{0}+\sum_{k=1}^{n-1} \overline{c_{k} e_{k}}=c_{0} e_{0}+\sum_{k=1}^{n-1} \bar{c}_{k} e_{n-k} \\
& \Longrightarrow c_{k}=\overline{c_{n-k}} \quad \forall 1 \leq k \leq n-1
\end{aligned}
$$

Finally, if $A$ is a linear transformation on $\mathbb{C}^{n}$ defined as $A\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right)$, then we have $A e_{k}=e^{i k \omega} e_{k}$, so that

$$
\begin{aligned}
& x_{1} x_{2}+\cdots+x_{n} x_{1} \\
& =(v, A v) \\
& =n+\sum_{k=1}^{n-1} e^{i k \omega}\left|c_{k}\right|^{2} \\
& =n+\sum_{k=1}^{n-1} e^{i k \omega} \frac{\left|c_{k}\right|^{2}+\left|c_{n-k}\right|^{2}}{2} \\
& =n+\sum_{k=1}^{n-1} \frac{e^{i k \omega}+e^{-i k \omega}}{2}\left|c_{k}\right|^{2} \\
& \leq n+\max _{1 \leq j \leq n-1}(\cos j \omega) \sum_{k=1}^{n-1}\left|c_{k}\right|^{2}=n+\cos \omega
\end{aligned}
$$

The equality holds if and only if $c_{1}=c_{n-1}=\sqrt{1 / 2}$, in other words, $x_{j}=1+\sqrt{2 / n} \cos (j \omega)$ for all $j$.

