2017 Fall Problem of the Week POW2017-22

Name: Tung Nguyen, ID: 2016xxxx

Problem. Let p, q, r be positive integers such that $p, q \geq r$. Ada and Betty independently read all source codes of their programming project. Ada found p bugs and Betty found q bugs, including r bugs that Ada found. What is the expected number of remaining bugs that neither Ada nor Betty found?

Solution. Let N be the total number of bugs. We shall estimate N. Suppose that each bug was independently found by Ada and Betty with probability p_{1} and p_{2}, respectively. On the one hand, because Ada found p bugs among N total bugs, it is reasonable to say that p_{1} is approximately equal to $\frac{p}{N}$. On the other hand, since Ada found r bugs among q bugs that Betty found and Ada's work was independent from Betty's, it is also feasible to claim that p_{1} is approximately equal to $\frac{r}{q}$. Thus, by examining Ada's work we see that $\frac{p}{N}$ is approximately equal to $\frac{r}{q}$, which implies that the expected number of N is $\frac{p q}{r}$ (this is acceptable as p, q, r are positive integers). By examining Betty's work with p_{2} we derive the same estimation for N, due to symmetry. Hence the expected number of remaining bugs that neither Ada nor Betty found is

$$
\frac{p q}{r}-p-q+r=\frac{(p-r)(q-r)}{r} .
$$

