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For all nonnegative integer n, call R”[x] the vector space consisting of real polynomials in vari-
able x of degree not exceeding n; call 7, (x) and Uy (x), respectively, the Chebyshev polynormals
of degree n of first and second kind. For all i = 1,n denote x; := cos( o 7r) SO X1,X2,...,Xp
are roots of 7.

Problem. [f n € N and f(x) € R"[x] satisfies |f(x)] < V1—x? Vx € [—1,1], then |f'(x)| <
2(n—1) Vx e [-1,1].

SOLUTION. We prove three lemmas.

Lemma 1. Forany P € R"![x],

1l T,(x
- Z P(x,) ( )
T n = X —X;
Proof. Lagrange’s interpolation formula for P(x) with nodes x1,x3,...,x, gives
-y ¢H (rx)=Y : ( )
= Hj;éi(xi —x;j) i i=1 Tn —Xi

Since T}, (cos @) sin@ = nsin(n@) Vo € R, we have

2_1 : 21'717r _1 i—1 o
T,(x) =T, (cos< : 7r>>:nsm(2i21 ):n( ) Vi=T,n.

2n sin( n 7[) 1—x?

Hence

i—11n

Lemma 2. IfP c R"![x] satisties /1 —x2|P(x)| < 1Vx € [~1,1] then |P(x)| < nV¥x € [—1,1].

Proof. We have sin(Z£) > Z[1—(£)2/6] > Z[1 —(Z)2/6] > 1 by the inequality sinx >x— )‘—3
Vx > 0. Therefore, if |x| < cos(£) =x; then /1 —x2 >sin(£) > 1 hence [P(x)| < \/7 <n.

1



Next, if |x| > x| then we can assume that x > x; (the case x < —x; can be done in the same

manner). Since x > x; > xp > ... > X, z"_(fc) is positive for all i = 1,n. Combining this with

Lemma 1 and the hypothesis v'1 —x2|P(x)| < 1 Vx € [—1, 1], we obtain

As T!(x) attains local maximum in (x1,1] at x = 1 and 7,/(1) = nU,_1(1) = n?, we deduce that

|P(x)] < %T,{ (1) = n, completing the proof of the lemma. O

Lemma 3. Ifg(t) is a trigonometric polynomial of degree at most n, or

n
g(t) =Y (axcos(kt) +bysin(kr)), ap,by eR Vk=1,n,
k=0

and |g(t)| < 1Vt €R, then |g'(t)| <nVt € R.

Proof. We need to show that |g’(f)| < n for every fixed 7y € R. Denote h(t) := w

Vvt € R. The identities

cos(k(tg+1)) — cos(k(to —t)) = —2sin(ktg) sin(kr) Vr € R,k € No,
sin(k(to+1)) —sin(k(to —t)) = —2cos(ktp) sin(kt) Vr € R,k € Ny,

assures that there are reals by, b», ..., b, satisfying

n
h(t) = bysint +bysin(2t) + - + by sin(nt) = Z by sin(kt).
k=1
Because sin(kt) = Ug_;(cost)sint Vi € R,k € N, we have h(r) = Q(cost)sint V¢ € R where
O(x) = Y1, byUi_1(x) € R"[x]. Furthermore, noting that |A(t)| < ‘g(mH)‘;'g(m_I)' <1, we
obtain |Q(cost)sins| < 1Vt € R. Letting x := cost, we get V1 —xZ|Q(x)] < 1 Vx € [-1,1].
Thus by Lemma 2 |Q(x)| <nVx € [—1,1] or |Q(cost)| < n ¥Vt € R. This implies

h(t)

t

sint

1K (0)] = lim

<n-1=n,
t—0

= lim |Q(cos?)| - lim
1—0 t—0

but since /'(0) = ¢’ (1) as #'(r) = w Vt € R, we deduce that |g’(¢0)| = | (0)| <n
The proof is completed. U



Now we are ready to prove the original problem. Since |f(x)| < V1 —x2 Vx € [—1,1], we have
f(—=1)= f(1) =0, s0o 1 —x? | f(x), and the problem is trivial if n < 1. If n > 2, there exists
P(x) € R"2[x] such that f(x) = (1 —x?)P(x), which follows v/1 —x2|P(x)| < 1 Vx € [-1,1].
Hence, by Lemma 2 |P(x)| <n—1Vx e [-1,1].

Next, let x = cos¢ for t € R, then P(x) = P(cost) € R"2[cost] and |P(cost)| = |P(x)| <n—1
vt € R. Since {cos(kt) : k € {0,1,...,n—2}} is a basis for R"~2[cos?], there are unique reals
ag, k = 0,n—2 such that P(cost) = ZZ;(% aicos(kt). Denote g(t) := P(cost)sint V¢t € R, then
f(cost) = g(t)sint Vt € R. From the identity

2cos(kt)sint =sin((k+1)t) —sin((k—1)t) Vt € R,k € Ny,
we see that g(¢) is a trigonometric polynomial of degree at most n — 1. Moreover, because
|g(t)| = |P(cost)sint] = /1 —x%|P(x)]| <1 VieR,

by Lemma 3 we have |g'(t)| <n—1Vr € R.

Finally, we shall compute the derivative of f(cost) with respect to ¢ in two ways. On the one

hand, @ = —f’(cost) sint, and on the other hand,
d t d(g(t)sint
f(;;)s ) - (g((itsm ) = g(t)cost +g'(t) sint = P(cost)sint cost + g’ (t) sint.

Therefore, — f'(cost) = P(cost)cost + g'(t), giving

£/ (cost)] < [P(cost)cost| +[/(r)
= |P(cost)|-|cost| +|g'(t)| < (n—1)|cost|+ (n—1) <2(n—1) VteR,

or | f'(x)] <2(n—1) Vx € [—1,1]. The problem is completely solved. Q
Remark. Equality holds if f(x) = (1 —x?)U,_2(x).



