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For all nonnegative integer n, call Rn[x] the vector space consisting of real polynomials in vari-
able x of degree not exceeding n; call Tn(x) and Un(x), respectively, the Chebyshev polynomials
of degree n of first and second kind. For all i = 1,n denote xi := cos(2i−1

2n π), so x1,x2, . . . ,xn
are roots of Tn.

Problem. If n ∈ N and f (x) ∈ Rn[x] satisfies | f (x)| ≤
√

1− x2 ∀x ∈ [−1,1], then | f ′(x)| ≤
2(n−1) ∀x ∈ [−1,1].

SOLUTION. We prove three lemmas.

Lemma 1. For any P ∈ Rn−1[x],

P(x) =
1
n

n

∑
i=1

(−1)i−1
√

1− x2
i P(xi)

Tn(x)
x− xi

.

Proof. Lagrange’s interpolation formula for P(x) with nodes x1,x2, . . . ,xn gives

P(x) =
n

∑
i=1

P(xi)

∏ j 6=i(xi− x j)
∏
j 6=i

(x− x j) =
n

∑
i=1

P(xi)

T ′n(xi)
· Tn(x)

x− xi
.

Since T ′n(cosϕ)sinϕ = nsin(nϕ) ∀ϕ ∈ R, we have

T ′n(xi) = T ′n

(
cos
(

2i−1
2n

π

))
= n

sin
(2i−1

2 π
)

sin
(2i−1

2n π
) = n(−1)i−1√

1− x2
i

∀i = 1,n.

Hence

P(x) =
n

∑
i=1

P(xi)

T ′n(xi)
· Tn(x)

x− xi
=

1
n

n

∑
i=1

(−1)i−1
√

1− x2
i P(xi)

Tn(x)
x− xi

. �

Lemma 2. If P∈Rn−1[x] satisfies
√

1− x2|P(x)| ≤ 1 ∀x∈ [−1,1] then |P(x)| ≤ n ∀x∈ [−1,1].

Proof. We have sin( π

2n)≥
π

2n [1−( π

2n)
2/6]≥ π

2n [1−(π

4 )
2/6]> 1

n by the inequality sinx≥ x− x3

6
∀x≥ 0. Therefore, if |x| ≤ cos( π

2n) = x1 then
√

1− x2≥ sin( π

2n)>
1
n , hence |P(x)| ≤ 1√

1−x2 < n.
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Next, if |x| > x1 then we can assume that x > x1 (the case x < −x1 can be done in the same
manner). Since x > x1 > x2 > .. . > xn,

Tn(x)
x−xi

is positive for all i = 1,n. Combining this with
Lemma 1 and the hypothesis

√
1− x2|P(x)| ≤ 1 ∀x ∈ [−1,1], we obtain

|P(x)|=

∣∣∣∣∣1n n

∑
i=1

(−1)i−1
√

1− x2
i P(xi)

Tn(x)
x− xi

∣∣∣∣∣
≤ 1

n

n

∑
i=1

√
1− x2

i |P(xi)|
Tn(x)
x− xi

≤ 1
n

n

∑
i=1

Tn(x)
x− xi

=
T ′n(x)

n
.

As T ′n(x) attains local maximum in (x1,1] at x = 1 and T ′n(1) = nUn−1(1) = n2, we deduce that
|P(x)| ≤ 1

nT ′n(1) = n, completing the proof of the lemma. �

Lemma 3. If g(t) is a trigonometric polynomial of degree at most n, or

g(t) =
n

∑
k=0

(ak cos(kt)+bk sin(kt)), ak,bk ∈ R ∀k = 1,n,

and |g(t)| ≤ 1 ∀t ∈ R, then |g′(t)| ≤ n ∀t ∈ R.

Proof. We need to show that |g′(t0)| ≤ n for every fixed t0 ∈ R. Denote h(t) := g(t0+t)−g(t0−t)
2

∀t ∈ R. The identities

cos(k(t0 + t))− cos(k(t0− t)) =−2sin(kt0)sin(kt) ∀t ∈ R,k ∈ N0,

sin(k(t0 + t))− sin(k(t0− t)) =−2cos(kt0)sin(kt) ∀t ∈ R,k ∈ N0,

assures that there are reals b1,b2, . . . ,bn satisfying

h(t) = b1 sin t +b2 sin(2t)+ · · ·+bn sin(nt) =
n

∑
k=1

bk sin(kt).

Because sin(kt) = Uk−1(cos t)sin t ∀t ∈ R,k ∈ N, we have h(t) = Q(cos t)sin t ∀t ∈ R where
Q(x) ≡ ∑

n
k=1 bkUk−1(x) ∈ Rn−1[x]. Furthermore, noting that |h(t)| ≤ |g(t0+t)|+|g(t0−t)|

2 ≤ 1, we
obtain |Q(cos t)sin t| ≤ 1 ∀t ∈ R. Letting x := cos t, we get

√
1− x2|Q(x)| ≤ 1 ∀x ∈ [−1,1].

Thus by Lemma 2 |Q(x)| ≤ n ∀x ∈ [−1,1] or |Q(cos t)| ≤ n ∀t ∈ R. This implies

|h′(0)|= lim
t→0

∣∣∣∣h(t)t

∣∣∣∣= lim
t→0
|Q(cos t)| · lim

t→0

∣∣∣∣sin t
t

∣∣∣∣≤ n ·1 = n,

but since h′(0) = g′(t0) as h′(t) = g′(t0+t)+g′(t0−t)
2 ∀t ∈ R, we deduce that |g′(t0)|= |h′(0)| ≤ n.

The proof is completed. �
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Now we are ready to prove the original problem. Since | f (x)| ≤
√

1− x2 ∀x ∈ [−1,1], we have
f (−1) = f (1) = 0, so 1− x2 | f (x), and the problem is trivial if n ≤ 1. If n ≥ 2, there exists
P(x) ∈ Rn−2[x] such that f (x) ≡ (1− x2)P(x), which follows

√
1− x2|P(x)| ≤ 1 ∀x ∈ [−1,1].

Hence, by Lemma 2 |P(x)| ≤ n−1 ∀x ∈ [−1,1].

Next, let x = cos t for t ∈ R, then P(x) = P(cos t) ∈ Rn−2[cos t] and |P(cos t)|= |P(x)| ≤ n−1
∀t ∈ R. Since {cos(kt) : k ∈ {0,1, . . . ,n−2}} is a basis for Rn−2[cos t], there are unique reals
ak, k = 0,n−2 such that P(cos t) = ∑

n−2
k=0 ak cos(kt). Denote g(t) := P(cos t)sin t ∀t ∈ R, then

f (cos t) = g(t)sin t ∀t ∈ R. From the identity

2cos(kt)sin t = sin((k+1)t)− sin((k−1)t) ∀t ∈ R,k ∈ N0,

we see that g(t) is a trigonometric polynomial of degree at most n−1. Moreover, because

|g(t)|= |P(cos t)sin t|=
√

1− x2|P(x)| ≤ 1 ∀t ∈ R,

by Lemma 3 we have |g′(t)| ≤ n−1 ∀t ∈ R.

Finally, we shall compute the derivative of f (cos t) with respect to t in two ways. On the one
hand, d f (cos t)

dt =− f ′(cos t)sin t, and on the other hand,

d f (cos t)
dt

=
d(g(t)sin t)

dt
= g(t)cos t +g′(t)sin t = P(cos t)sin t cos t +g′(t)sin t.

Therefore, − f ′(cos t) = P(cos t)cos t +g′(t), giving

| f ′(cos t)| ≤ |P(cos t)cos t|+ |g′(t)|
= |P(cos t)| · |cos t|+ |g′(t)| ≤ (n−1)|cos t|+(n−1)≤ 2(n−1) ∀t ∈ R,

or | f ′(x)| ≤ 2(n−1) ∀x ∈ [−1,1]. The problem is completely solved. q

Remark. Equality holds if f (x)≡ (1− x2)Un−2(x).
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