POW 2017-12

Joonhyung Shin

September 3, 2017

Let $n=2 k+1$. Also, let \mathbf{r}_{i} and \mathbf{c}_{i} denote the i th row vector and the i th column vector, respectively. Since the i th row vector of $A+A^{T}$ is $\mathbf{r}_{i}+\mathbf{c}_{i}$, we have

$$
2 k+1=\operatorname{rank}\left(A+A^{T}\right) \leq \operatorname{rank}(A)+\operatorname{rank}\left(A^{T}\right)=2 \operatorname{rank}(A)
$$

Therefore, $\operatorname{rank}(A) \geq k+1$, and the same result holds for B. Then nullity $(A)<k+1$ and $\operatorname{rank}(B) \geq k+1$, implying that $A B \neq 0$.

