Let $!n=\#\{6: n \rightarrow n: \quad 6(x) \neq x \quad \forall x=0,1, \cdots, n-1\}$ I use following ${ }^{\text {son.". }}{ }^{n-11}$ identities in this proof;
(1) $!(n+2)=(n+1) \cdot\{!(n+1)+!n\}$
(2) $!(n+3)=(n+3) \cdot!(n+2)+(-1)^{n+3}$
(3) $\lim _{n \rightarrow \infty} \frac{n!}{!n}=e$

Not only $(n+1) a_{n}$ and ! $(n+2)$ has the same recurrence relation, but also $1 \cdot a_{0}=12=1$ and $2 \cdot a_{1}=13=2$. Therefore $(n+1) a_{n}=!(n+2)$.
Using this, the series can be rewritten as

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{a_{n} a_{n+1}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+2)!}{!(n+2)!(n+3)}
$$

Because of (2), this can be changed into telescoping sum as follows:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+2)!}{!(n+2)!(n+3)}=\sum_{n=0}^{\infty}(n+2)!\left\{\frac{n+3}{!(n+3)}-\frac{1}{!(n+2)}\right\}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left|\frac{(n+3)!}{!(n+3)}-\frac{(n+2)!}{!(n+2)}\right| \\
& =-\frac{2!}{!2}+\lim _{n \rightarrow \infty} \frac{(n+3)!}{!(n+3)} \\
& =-2+e
\end{aligned}
$$

