KAIST POW 2017-13 : Infinite series with recurrence relation

Ki Joung Jang

September 9, 2017

We define additional sequence b_{n} as follows: $b_{0}=1, b_{1}=2$, and $b_{n}=(n+1) b_{n-1}+n b_{n-2}$ for $n \geq 2$. Then we have following lemma.
Lemma 1. For each $k \geq 0$,

$$
\sum_{n=0}^{k}(-1)^{n} \frac{n!}{a_{n} a_{n+1}}=\frac{b_{k}}{a_{k+1}}
$$

Proof. Trivial if $k=0$, Then it is enough to show that for each $k \geq 1$,

$$
(-1)^{k} \frac{k!}{a_{k} a_{k+1}}=\frac{b_{k}}{a_{k+1}}-\frac{b_{k-1}}{a_{k}}
$$

, which is equivalent to

$$
(-1)^{k} k!=b_{k} a_{k}-b_{k-1} a_{k+1}
$$

for each $k \geq 1$. It is trivial if $k=1$, and we may use mathematical induction since

$$
\begin{aligned}
& b_{k+1} a_{k+1}-b_{k} a_{k+2} \\
& =\left((k+2) b_{k}+(k+1) b_{k-1}\right) a_{k+1}-b_{k}\left((k+2) a_{k+1}+(k+1) a_{k}\right) \\
& =-(k+1)\left(b_{k} a_{k}-b_{k+1} a_{k+1}\right)
\end{aligned}
$$

Hence, the problem is equivalent to check limit of the sequence b_{k} / a_{k+1} : To adjust index, we may write $c_{k}=a_{k+1}$. Then it satisfies $c_{0}=1, c_{1}=3$ and $c_{n}=(n+1) c_{n-1}+n c_{n-2}$, which is same recurrence formula with b_{n}. Then for each $n \geq 2$, we have the formula

$$
\frac{b_{n}}{c_{n}}=\frac{(n+1) b_{n-1}+n b_{n-2}}{(n+1) c_{n-1}+n c_{n-2}}
$$

and we can show that b_{n} / c_{n} becomes convergent of generalized continued fraction [Wikipedia, "generalized continued fraction"]

$$
\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{4+\frac{4}{5+\cdots}}}}}
$$

, which can be trivially modified as (just multipling from above)

$$
\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{5+\frac{6}{6+\cdots}}}}}
$$

To calculate this continued fraction, apply Euler's continued fraction formula[Wikipedia, "Euler's continued fraction formula"] for $e^{-1}=1-1+1 / 2!-1 / 3!+1 / 4!-\cdots$ becomes

$$
e^{-1}=\frac{1}{1-\frac{-1}{0-\frac{-1}{1-\frac{-2}{2}}}}=\frac{1}{1+1+\frac{2}{2+\frac{3}{3+\cdots}}}
$$

Then taking inverse and deleting 2 yields the answer :

$$
\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{5+\frac{6}{6+\cdots}}}}}=e-2
$$

