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We define additional sequence bn as follows: b0 = 1, b1 = 2, and bn = (n + 1)bn−1 + nbn−2 for n ≥ 2.
Then we have following lemma.
Lemma 1. For each k ≥ 0,
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Proof. Trivial if k = 0, Then it is enough to show that for each k ≥ 1,
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, which is equivalent to
(−1)kk! = bkak − bk−1ak+1

for each k ≥ 1. It is trivial if k = 1, and we may use mathematical induction since
bk+1ak+1 − bkak+2

= ((k + 2)bk + (k + 1)bk−1)ak+1 − bk((k + 2)ak+1 + (k + 1)ak)

= −(k + 1)(bkak − bk+1ak+1)

Hence, the problem is equivalent to check limit of the sequence bk/ak+1 : To adjust index, we may write
ck = ak+1. Then it satisfies c0 = 1, c1 = 3 and cn = (n+ 1)cn−1 + ncn−2, which is same recurrence formula
with bn. Then for each n ≥ 2, we have the formula

bn
cn

=
(n+ 1)bn−1 + nbn−2

(n+ 1)cn−1 + ncn−2

and we can show that bn/cn becomes convergent of generalized continued fraction [Wikipedia, ”generalized
continued fraction”]
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, which can be trivially modified as (just multipling from above)
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To calculate this continued fraction, apply Euler’s continued fraction formula[Wikipedia, ”Euler’s con-
tinued fraction formula”] for e−1 = 1− 1 + 1/2!− 1/3! + 1/4!− · · · becomes
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Then taking inverse and deleting 2 yields the answer :
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= e− 2.
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