2017 Spring Problem of the Week POW2017-08

NAME: TUNG NGUYEN, ID: 2016XXXX

The answer is negative, and can be actually derived from the following result. log stands for natural logarithm.

Problem. Let $\varepsilon \in (0,1)$ be any constant and $c := \log \frac{1}{1-\varepsilon}$. Then for all large n, [n] contains a subset A of size at most $3c^{-1}\log n$ which intersects every arithmetic progression of length at least εn in [n].

SOLUTION. Setting $k_1 = k_1(n) := \lfloor 3c^{-1} \log n \rfloor$ and $k_2 = k_2(n) := \lceil \varepsilon n \rceil$. Obviously $k_1 + k_2 < n$ for all *n* sufficiently large. For every *n*, let $\mathscr{F} = \mathscr{F}(n)$ be the family consisting of all arithmetic progressions of length k_2 in [n]. Denote

$$s(n) := \#\left\{ (A,S) : A \in \binom{[n]}{k_1}, S \in \mathscr{F}, A \cap S = \emptyset \right\}.$$

We have the following claims.

Claim 1. $|\mathscr{F}| \leq n^2$.

Proof. Taking a look at each sequence $S = (a, a+b, ..., a+(k_2-1)b) \in \mathscr{F}$, where $a, b \in \mathbb{N}$, we see that $a + (k_2 - 1)b \le n$. On the other hand, each pair $(a, b) \in \mathbb{N}^2$ satisfying $a + (k_2 - 1)b \le n$ gives exactly one sequence in \mathscr{F} , that is

$$(a, a+b, \ldots, a+(k_2-1)b).$$

Therefore, as that $a + (k_2 - 1)b \le n$ and that $a, b \in \mathbb{N}$ follow a, b < n,

$$\mathscr{F}| = \#\{(a,b) \in \mathbb{N}^2 : a + (k_2 - 1)b \le n\} \le n^2.$$

Claim 2. As n grows large,

$$s(n) < \binom{n}{k_1},$$

which implies that there exists an element of $\binom{[n]}{k_1}$ that intersects every element of \mathscr{F} . *Proof.* By counting s(n) with respect to the elements of \mathscr{F} and using Claim 1, we obtain

$$s(n) = |\mathscr{F}|\binom{n-k_2}{k_1} \le n^2\binom{n-k_2}{k_1}.$$

Now, observe that

$$\frac{\binom{n}{k_1}}{\binom{n-k_2}{k_1}} = \prod_{i=0}^{k_1-1} \frac{n-i}{n-k_2-i} \ge \left(\frac{n}{n-k_2}\right)^{k_1},$$

and

$$\frac{n}{n-k_2} \ge \frac{n}{n-\varepsilon n} = \frac{1}{1-\varepsilon},$$

we have, as $c = \log \frac{1}{1-\varepsilon}$, that for all *n* large,

$$\frac{\binom{n}{k_1}}{\binom{n-k_2}{k_1}} \ge \frac{1}{(1-\varepsilon)^{k_1}} = e^{ck_1} > n^2,$$

while the last inequality holds because $k_1 = \lfloor 3c^{-1} \log n \rfloor > 2c^{-1} \log n$ for all large n. \Box The last claim completes the solution. \Box