2017 Spring Problem of the Week
 POW2017-08

Name: Tung Nguyen, ID: 2016xxxx

The answer is negative, and can be actually derived from the following result. log stands for natural logarithm.

Problem. Let $\varepsilon \in(0,1)$ be any constant and $c:=\log \frac{1}{1-\varepsilon}$. Then for all large $n,[n]$ contains a subset A of size at most $3 c^{-1} \log n$ which intersects every arithmetic progression of length at least εn in $[n]$.

Solution. Setting $k_{1}=k_{1}(n):=\left\lfloor 3 c^{-1} \log n\right\rfloor$ and $k_{2}=k_{2}(n):=\lceil\varepsilon n\rceil$. Obviously $k_{1}+k_{2}<n$ for all n sufficiently large. For every n, let $\mathscr{F}=\mathscr{F}(n)$ be the family consisting of all arithmetic progressions of length k_{2} in $[n]$. Denote

$$
s(n):=\#\left\{(A, S): A \in\binom{[n]}{k_{1}}, S \in \mathscr{F}, A \cap S=\emptyset\right\} .
$$

We have the following claims.
Claim 1. $|\mathscr{F}| \leq n^{2}$.
Proof. Taking a look at each sequence $S=\left(a, a+b, \ldots, a+\left(k_{2}-1\right) b\right) \in \mathscr{F}$, where $a, b \in \mathbb{N}$, we see that $a+\left(k_{2}-1\right) b \leq n$. On the other hand, each pair $(a, b) \in \mathbb{N}^{2}$ satisfying $a+\left(k_{2}-1\right) b \leq n$ gives exactly one sequence in \mathscr{F}, that is

$$
\left(a, a+b, \ldots, a+\left(k_{2}-1\right) b\right) .
$$

Therefore, as that $a+\left(k_{2}-1\right) b \leq n$ and that $a, b \in \mathbb{N}$ follow $a, b<n$,

$$
|\mathscr{F}|=\#\left\{(a, b) \in \mathbb{N}^{2}: a+\left(k_{2}-1\right) b \leq n\right\} \leq n^{2} .
$$

Claim 2. As n grows large,

$$
s(n)<\binom{n}{k_{1}},
$$

which implies that there exists an element of $\binom{[n]}{k_{1}}$ that intersects every element of \mathscr{F}.
Proof. By counting $s(n)$ with respect to the elements of \mathscr{F} and using Claim 1, we obtain

$$
s(n)=|\mathscr{F}|\binom{n-k_{2}}{k_{1}} \leq n^{2}\binom{n-k_{2}}{k_{1}} .
$$

Now, observe that

$$
\frac{\binom{n}{k_{1}}}{\binom{n-k_{2}}{k_{1}}}=\prod_{i=0}^{k_{1}-1} \frac{n-i}{n-k_{2}-i} \geq\left(\frac{n}{n-k_{2}}\right)^{k_{1}}
$$

and

$$
\frac{n}{n-k_{2}} \geq \frac{n}{n-\varepsilon n}=\frac{1}{1-\varepsilon},
$$

we have, as $c=\log \frac{1}{1-\varepsilon}$, that for all n large,

$$
\frac{\binom{n}{k_{1}}}{\binom{n-k_{2}}{k_{1}}} \geq \frac{1}{(1-\varepsilon)^{k_{1}}}=e^{c k_{1}}>n^{2}
$$

while the last inequality holds because $k_{1}=\left\lfloor 3 c^{-1} \log n\right\rfloor>2 c^{-1} \log n$ for all large n. The last claim completes the solution.

