KAIST POW 2017-08

Inhyeok Choi

May 10, 2017

Problem. Does there exist a constant $\epsilon>0$ such that for each positive integer n and each subset A of $\{1,2, \cdots, n\}$ with $|A|<\epsilon n$, there exists an arithmetic progression S in $\{1,2, \cdots, n\}$ such that $S \cap A \neq \emptyset$ and $|S|>\epsilon n$?

Solution. We claim that there is no such constant ϵ. To prove this suppose $\epsilon>0$ is given. Then because there are infinitely many prime numbers, there exists prime p satisfying $\frac{1}{p-1}<\epsilon$. Now consider a subset $A=\left\{p, 2 p, \cdots, p^{2}\right\}$ in $\left\{1,2, \cdots, p^{2}\right\}$. It is clear that $|A|=\frac{1}{p} \cdot p^{2}<\epsilon p^{2}$. Then does there exist an arithmetic progresion S in $\{1,2, \cdots, n\}$ such that $|S|>\frac{p^{2}}{p-1}$? For such S we have $|S|>\frac{p^{2}}{p-1}>p$ so it should contain at least $p+1$ consecutive terms $a, a+d, \cdots, a+p d$. This is included in $\left\{1, \cdots, p^{2}\right\}$ so we have $p d \leq p^{2}-1$, which means that $d<p$. If so, d is relatively prime with p, and for any $1<m<p, d m$ is also relatively prie with p. Thus, $a, a+d, \cdots, a+(p-1) d$ contains p different residues modulo p, which includes zero. Thus, one of them are contained in A, a contradiction. Thus there is no such S.

