2017 Spring Problem of the Week POW2017-09

Name: Tung Nguyen, ID: 2016xxxx

Problem. Solve the positive Diophantine equation

$$
\begin{equation*}
3^{a}+5^{b}=2^{c} \tag{1}
\end{equation*}
$$

Solution. We have three claims.
Claim 1. If $b=1$ then $(a, b, c)=(1,1,3),(3,1,5)$ are solutions.
Proof. (1) becomes

$$
3^{a}+5=2^{c} .
$$

If $c \leq 5$ then we can easily check that $(a, b, c)=(1,1,3),(3,1,5)$ are solutions. If $c \geq 6$, then

$$
3^{a} \equiv-5 \equiv 3^{3} \quad\left(\bmod 2^{5}\right)
$$

following that $8 \mid a-3$ as 3 belongs to 8 modulo 2^{5}. But 3 belongs to 16 modulo 2^{6}, and

$$
3^{a} \equiv-5 \not \equiv 3^{3} \quad\left(\bmod 2^{6}\right),
$$

thus $16 \nmid a-3$. Consequently, $a \equiv 11(\bmod 16)$, which implies

$$
2^{c} \equiv 3^{a}+5 \equiv 3^{6}+5 \equiv-5 \quad(\bmod 17)
$$

but it is easy to verify, as 2 belongs to 8 modulo 17 , that there is no c such that $2^{c} \equiv-5$ (mod 17).
Therefore, $(a, b, c)=(1,1,3),(3,1,5)$ if $b=1$.
Claim 2. If $a=1$ then $(a, b, c)=(1,1,3),(1,3,7)$ are solutions.
Proof. (1) becomes

$$
3+5^{b}=2^{c} .
$$

If $c \leq 7$ then $c=3,7$ satisfy (1), or $(a, b, c)=(1,1,3),(1,3,7)$ are two solutions. If $c \geq 8$, then

$$
5^{b} \equiv-3 \equiv 5^{3} \quad\left(\bmod 2^{7}\right)
$$

implying $32 \mid b-3$, as 5 belongs to 32 modulo 2^{7}. On the other hand,

$$
5^{b} \equiv-3 \not \equiv 5^{3} \quad\left(\bmod 2^{8}\right)
$$

and 5 belongs to 64 modulo 2^{8}, thus $64 \nmid b-3$, or $(b-3) \bmod 256 \in\{32,96,160,224\}$, or

$$
b \bmod 256 \in\{35,99,163,227\} .
$$

Therefore, because 257 is prime, we obtain,

$$
2^{c}-3 \equiv 5^{b} \equiv 5^{x} \quad(\bmod 257)
$$

where $x \in\{35,99,163,227\}$. Observe that, as 5 belongs to 256 modulo 257 (5 is a quadratic nonresidue modulo 257),

$$
5^{163} \equiv-5^{35} \quad(\bmod 257), \quad 5^{227} \equiv-5^{99} \quad(\bmod 257)
$$

Furthermore, since $5^{7} \equiv-3(\bmod 257)$ and $3^{5} \equiv-14(\bmod 257)$, we have

$$
\begin{aligned}
5^{35} \equiv\left(5^{7}\right)^{5} \equiv(-3)^{5} & \equiv 14 \quad(\bmod 257) \\
5^{99} \equiv 5\left(5^{7}\right)^{14} \equiv 5(-3)^{14} \equiv 5 \cdot 3^{4}\left(3^{5}\right)^{2} & \equiv 5 \cdot 81(-14)^{2} \equiv-33 \quad(\bmod 257)
\end{aligned}
$$

which implies that

$$
2^{c}-3 \bmod 257 \in\left\{5^{35}, 5^{99}, 5^{163}, 5^{227}\right\}=\{14,-33,-14,33\}
$$

or $2^{c} \bmod 257 \in\{17,-30,-11,36\}$. However, we can easily check, since 2 belongs to 16 modulo 257 , that there is no power of 2 which is congruent to $17,-30,-11$, or 36 modulo 257 . Hence, there is no solution safisfying $c \geq 8$, thus $(a, b, c)=(1,1,3),(1,3,7)$ if $a=1$.

Claim 3. There is no solution if $a, b \geq 2$.
Proof. We have $c \geq 3$. Thus, in (1) considering modulo 8 we see that a, b are odd, which follows, by considering modulo 3 , that c is also odd. As $a \geq 2$, we have

$$
2^{c} \equiv 5^{b} \equiv-4^{b} \equiv-2^{2 b} \quad(\bmod 9)
$$

implying $9 \mid 2^{2 b-c}+1$ or $3 \mid 2 b-c$, or $3 \mid b+c$. Thus, $(b, c) \bmod 6 \in\{(3,3),(5,1),(1,5)\}$ as b, c are odd. If $(b, c) \bmod 6$ is either $(3,3)$ or $(5,1)$, then $2^{c}-5^{b} \bmod 7$ is either 2 or -1 , respectively. The first subcase is impossible since there is no odd a such that $3^{a} \equiv 2(\bmod 7)$. The second subcase leads to $3 \mid a$, but then, as $5^{6} \equiv 2^{6} \equiv-1(\bmod 13)$ and $3^{3} \equiv 1(\bmod 13)$,

$$
1 \equiv 3^{a} \equiv 2^{c}-5^{b} \equiv 2(-1)^{\frac{c-1}{6}}-5^{5}(-1)^{\frac{b-5}{6}} \equiv 2(-1)^{\frac{c-1}{6}}-8(-1)^{\frac{b-5}{6}} \quad(\bmod 13)
$$

or $1 \bmod 13 \in\{ \pm 3, \pm 6\}$, which is absurd. Thus, we obtain $(b, c) \bmod 6=(1,5)$. Considering modulo 7 again, we see that

$$
3^{a} \equiv 2^{c}-5^{b} \equiv 2^{5}-5 \equiv-1 \quad(\bmod 7)
$$

or $a \equiv 3(\bmod 6)$. This leads to

$$
1 \equiv 3^{a} \equiv 2^{c}-5^{b} \equiv 2^{5}(-1)^{\frac{c-5}{6}}-5(-1)^{\frac{b-1}{6}} \equiv 6(-1)^{\frac{c-5}{6}}-5(-1)^{\frac{b-1}{6}} \quad(\bmod 13)
$$

and thus $\frac{c-5}{6}$ and $\frac{b-1}{6}$ are even. We take congruences modulo 5 now to get, as $2^{4} \equiv 1(\bmod 5)$,

$$
3^{a} \equiv 2^{c} \equiv 2^{5} \equiv 2 \quad(\bmod 5)
$$

so that $a \equiv 3(\bmod 4)$. Consequently, there are nonnegative integers a_{1}, b_{1}, c_{1} such that

$$
a=12 a_{1}+3, \quad b=12 b_{1}+1, \quad c=12 c_{1}+5
$$

and we obtain a new equation

$$
3^{12 a_{1}+3}+5^{12 b_{1}+1}=2^{12 c_{1}+5}
$$

Since $b \geq 2$,

$$
2^{12 c_{1}+5} \equiv 3^{3\left(4 a_{1}+1\right)} \equiv 2^{4 a_{1}+1} \quad(\bmod 25),
$$

so that, as 2 belongs to 20 modulo $25,5 \mid 4 a_{1}-12 c_{1}-4$ or $5 \mid a_{1}+2 c_{1}-1$, thus

$$
\left(a_{1}, c_{1}\right) \bmod 5 \in\{(2,2),(1,0),(3,4),(4,1),(0,3)\}
$$

or, considering modulo 61 , by noting that $3^{5} \equiv-1(\bmod 61)$ and $2^{6} \equiv 3(\bmod 61)$,

$$
\begin{aligned}
5^{12 b_{1}+1} \bmod 61 & \in\left\{2^{12 y+5}-3^{12 x+3}:(x, y) \in\{(2,2),(1,0),(3,4),(4,1),(0,3)\}\right\} \bmod 61 \\
& =\{24,-28,-10,-20,-1\}
\end{aligned}
$$

However, this is a contradiction: as 5 belongs to 30 modulo 61 (5 is a quadratic residue modulo $61)$ and $5^{3} \equiv 3(\bmod 61)$ we have

$$
\left\{5^{12 x+1}: x \in \mathbb{N}\right\} \bmod 61=\left\{5,5^{13}, 5^{25}, 5^{37}, 5^{49}\right\} \bmod 61=\{5,-22,-13,-16,-15\}
$$

As a consequence, there is no solution if $a, b \geq 2$.
To sum up, the solutions are $(a, b, c)=(1,1,3),(1,3,7),(3,1,5)$.

