POW: 2017-06 Powers of 2

2014 Jo Tae Hyouk

April 11, 2017

All the bases of the log in this proof is 10. For given $r \in \mathbb{R}$, let $\{r\} := r - \lfloor r \rfloor$. Observe that first digit of 2^n is 9 iff $9 \times 10^m \le 2^n < 10^{m+1}$ for some nonnegative integer m iff $\log 9 \le \{n \log 2\} < 1$. Since $\log 2$ is irrational, the set $\{\{n \log 2\} : n \in \mathbb{N}\}$ is dense in [0,1]. Therefore there are infinitely many powers of 2 which starts with 9 in decimal representation.

Lemma. If $r \in \mathbb{R}$ is irrational, then $S := \{\{nr\} : n \in \mathbb{N}\}$ is dense in [0,1]

Proof. A set $A \subset [0,1]$ is dense in [0,1] iff for all integer n>1, $A \cap [\frac{k}{n},\frac{k+1}{n}) \neq \emptyset$ for nonnegative integer k< n. Let n>1 be an integer. By pigeon-hole principle, there exist two distinct nonnegative integers a and b so that $\frac{k}{n} \leq \{ar\} < \{br\} < \frac{k+1}{n}$ for some nonnegative integer k < n. Let $\delta = \{br\} - \{ar\}$. If a < b, then $\{m(b-a)r\} = m\delta$ for integer $m \in (0,\delta^{-1})$. If a > b, then $\{m(b-a)r\} = 1 - m\delta$ for integer $m \in (0,\delta^{-1})$. Since $0 < \delta < \frac{1}{n}$, for each nonnegative integer k < n there exists two integers $m', m \in (0,\delta^{-1})$ so that $m\delta, 1 - m'\delta$ are in $[\frac{k}{n},\frac{k+1}{n})$. Therefore S is dense in [0,1].