POW: 2017-04 More than a half
 2014 Jo Tae Hyouk

March 28, 2017

Problem. Prove or disprove that exactly one of the following is true for every subset A of $\{(i, j): i, j \in\{1,2, \ldots, n\}, i \neq j\}$.
(i) There exists a sequence of distinct integers $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ for some integer $k>1$ such that

$$
\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k-1}, i_{k}\right),\left(i_{k}, i_{1}\right) \in A
$$

(ii) There exists a collection of finite sets A_{1}, \ldots, A_{n} such that for all distinct $i, j \in\{1,2, \ldots, n\},(i, j) \in A$ if and only if

$$
\frac{1}{2}\left|A_{i}\right|<\left|A_{i} \cap A_{j}\right| \leq \frac{1}{2} A_{j}
$$

Proof. Suppose A is a subset of $\{(i, j): i, j \in\{1,2, \ldots, n\}, i \neq j\}$. If A satisfies (i), then (ii) can not be true since if both holds, then

$$
\left|A_{i_{1}}\right|<\left|A_{i_{2}}\right|<\ldots<\left|A_{i_{k}}\right|<\left|A_{i_{1}}\right|
$$

which is a contradiction. So suppose (i) does not hold. A can be viewed as directed graph. Since A does not satisfy (i), A is acyclic. Therefore, by using topological sort (click here to see what topological sort is), there is a renumbering of $1,2, \ldots, n$ so that $(i, j) \in A$ implies $i<j$. To prove the problem, we give a construction of A_{1}, \ldots, A_{n}. Before giving the construction, we start with some notions. For two set X and Y, let $X+Y:=X \cup Y$ and $X-Y:=X \backslash Y$. For more than two sets X_{1}, \ldots, X_{n}, let

$$
\left.X_{1} \pm X_{2} \ldots \pm X_{n}:=\left(\ldots\left(\left(X_{1} \pm X_{2}\right) \pm X_{3}\right) \ldots\right) \pm X_{n}\right)
$$

so the calculation goes from left to right. And let I_{j}^{k} be 1 if $(j, k) \in A$ and -1 else. With these notions, now we give the construction of A_{1}, \ldots, A_{n} as follows: Let $A_{1}=\{1\}$. For $1<k \leq n$, define A_{k} to be the set

$$
A_{k}=\left\{1,2,3, \ldots, 3^{k-1}\right\}+I_{k-1}^{k} A_{k-1}+I_{k-2}^{k} A_{k-2}+\ldots+I_{1}^{k} A_{1}
$$

Observe that (recall $(j, k) \in A$ implies $j<k)$

1. $3^{k-2}+1, \ldots, 3^{k-1}$ are in A_{k}, so $3^{k-1}-3^{k-2} \leq\left|A_{k}\right| \leq 3^{k-1}$
2. If $(j, k) \in A$, then $3^{j-2}+1, \ldots, 3^{j-1}$ are also in $A_{j} \cap A_{k}$
3. If $(j, k) \notin A$, then $3^{j-2}+1, \ldots, 3^{j-1}$ are also not in $A_{j} \cap A_{k}$

By these observations, if $(j, k) \in A$,

$$
\frac{\left|A_{j}\right|}{2} \leq \frac{3^{j-1}}{2}<3^{j-1}-3^{j-2} \leq\left|A_{j} \cap A_{k}\right| \leq\left|A_{j}\right| \leq \frac{\left|A_{k}\right|}{2}
$$

and if $(j, k) \notin A$,

$$
\left|A_{j} \cap A_{k}\right| \leq 3^{j-2} \leq \frac{\left|A_{j}\right|}{2}
$$

Therefore (ii) holds.

