2017-06 Powers of 2

201 Hanpil Kang

April 10, 2017
pf)
Suppose there exists finite n such that first digit of 2^{n} is 9 and let the maximum such n as M. (There exists such n like $n=53$ and $2^{53}=$ 9007199254740992.)

Suppose, $S=\left\{\left\{\log 2^{x}\right\} \mid x>M\right\}$ and $U=$ lub S. Here $\}$ denotes fractional part $(\{x\}=x-\lfloor x\rfloor)$. Then $U \leq \log 9$, since 10^{u+n} where $\log 9 \leq u<1, n \in \mathbb{N}$ will give 9 as first digit.

Suppose, $T=\left\{\log 1.024+\left\{\log 2^{x}\right\} \mid x>M\right\}$. Then, lub $T=$ lub $U+$ $\log 1.024<\log 9+\log 1.024=\log 9.216<1$. Therefore, we also can write T as $T=\left\{\left\{\log 2^{10} 2^{x}\right\} \mid x>M\right\}=\left\{\left\{\log 2^{x}\right\} \mid x>M+10\right\} \subset S$.
$T \subset S$ but lub $T>$ lub U gives contradiction. Therefore, there exists infinitely many n such that first digit of 2^{n} is 9 .

Note)
Also, we can explicitly give sequence $a_{1}=2^{53}, a_{n+1}=a_{n} * 2^{93}$ when second digit of a_{n} is larger than or equal to $5, a_{n+1}=a_{n} * 2^{10}$, when second digit of a_{n} is less than or equal to 4 .
$9.5 \times 10^{k} \leq a_{n}<10.0 \times 10^{k}$ gives $9.4 \times 10^{k+28} \leq a_{n+1}<10.0 \times 10^{k+28}$. $\left(0.99 \times 10^{28}<2^{93}<10^{28}\right)$
$9.0 \times 10^{k} \leq a_{n}<9.5 \times 10^{k}$ gives $9.0 \times 10^{k+3} \leq a_{n+1}<9.8 \times 10^{k+3}$. $\left(10^{3}<2^{10}<1.03 \times 10^{3}\right)$

Using induction gives first digit of every element in $\left\{a_{n}\right\}$ is $9,\left(2^{53}, 2^{63}\right.$, $\left.2^{73}, 2^{83}, 2^{176}, 2^{269}, 2^{279}, \cdots\right)$.

