2017-06 Powers of 2

201 Hanpil Kang

April 10, 2017

pf)

Suppose there exists finite n such that first digit of 2^n is 9 and let the maximum such n as M. (There exists such n like n = 53 and $2^{53} = 9007199254740992$.)

Suppose, $S = \{ \{ log \ 2^x \} | x > M \}$ and $U = lub \ S$. Here $\{ \}$ denotes fractional part $(\{x\} = x - \lfloor x \rfloor)$. Then $U \leq log \ 9$, since 10^{u+n} where $log \ 9 \leq u < 1, n \in \mathbb{N}$ will give 9 as first digit.

Suppose, $T = \{ log \ 1.024 + \{ log \ 2^x \} | x > M \}$. Then, $lub \ T = lub \ U + log \ 1.024 < log \ 9 + log \ 1.024 = log \ 9.216 < 1$. Therefore, we also can write T as $T = \{ \{ log \ 2^{10}2^x \} | x > M \} = \{ \{ log \ 2^x \} | x > M + 10 \} \subset S$.

 $T \subset S$ but *lub* T > lub U gives contradiction. Therefore, there exists infinitely many n such that first digit of 2^n is 9.

Note)

Also, we can explicitly give sequence $a_1 = 2^{53}$, $a_{n+1} = a_n * 2^{93}$ when second digit of a_n is larger than or equal to 5, $a_{n+1} = a_n * 2^{10}$, when second digit of a_n is less than or equal to 4.

 $9.5 \times 10^k \le a_n < 10.0 \times 10^k$ gives $9.4 \times 10^{k+28} \le a_{n+1} < 10.0 \times 10^{k+28}$. $(0.99 \times 10^{28} < 2^{93} < 10^{28})$

 $9.0 \times 10^{k} \le a_{n} < 9.5 \times 10^{k}$ gives $9.0 \times 10^{k+3} \le a_{n+1} < 9.8 \times 10^{k+3}$. $(10^{3} < 2^{10} < 1.03 \times 10^{3})$

Using induction gives first digit of every element in $\{a_n\}$ is 9, $(2^{53}, 2^{63}, 2^{73}, 2^{83}, 2^{176}, 2^{269}, 2^{279}, \cdots)$.