2017 Spring Problem of the Week
 POW2017-05

Name: Tung Nguyen, ID: 2016xxxx
Problem. Suppose that $f:(2, \infty) \rightarrow(-2,2)$ is a continuous function and there exists a positive constant m such that $\left|1+x f(x)+(f(x))^{2}\right| \leq m$ for any $x>2$. Prove that, for any $x>2$,

$$
\left|f(x)-\frac{-x+\sqrt{x^{2}-4}}{2}\right| \leq 6 \sqrt{m}
$$

By substituting $t:=\frac{x-\sqrt{x^{2}-4}}{2} \in(0,1)$ and denote $g(t):=-f\left(t+\frac{1}{t}\right)=-f(x)$, we will prove a similar result, but much stronger.

Problem. Let $g:(0,1) \rightarrow(-2,2)$ be a continuous function such that there exists a positive real m satisfying

$$
\left|(g(t)-t)\left(g(t)-\frac{1}{t}\right)\right| \leq m \quad \forall t \in(0,1)
$$

Prove that

$$
|g(t)-t| \leq(1+\sqrt{2}) \sqrt{m} \quad \forall t \in(0,1) .
$$

Solution. Setting $c:=1+\sqrt{2}$, then $c-\frac{1}{c}=2$. Suppose, for the sake of contradiction, that there is some $a \in(0,1)$ such that $|g(a)-a|>c \sqrt{m}$. We have some claims below.
Claim 1. $2 g(a)>a+\frac{1}{a}$.
Proof. From the contradictive hypothesis, we have

$$
|g(a)-a|>c \sqrt{m}>\frac{m}{c \sqrt{m}}>\frac{|g(a)-a|\left|g(a)-\frac{1}{a}\right|}{|g(a)-a|}=\left|g(a)-\frac{1}{a}\right| .
$$

We find out $(g(a)-a)^{2}>\left(g(a)-\frac{1}{a}\right)^{2}$, or

$$
\left(\frac{1}{a}-a\right)\left(2 g(a)-a-\frac{1}{a}\right)>0 .
$$

As $\frac{1}{a}>1>a$, we obtain $2 g(a)>a+\frac{1}{a}$.
Claim 2. $a<\sqrt{m+1}-\sqrt{m}$.

Proof. From Claim 1, $g(a)>\frac{1}{2}\left(a+\frac{1}{a}\right)>a$, which follows $g(a)-a=|g(a)-a|>c \sqrt{m}$. On the other hand,

$$
g(a)-\frac{1}{a} \leq\left|g(a)-\frac{1}{a}\right| \leq \frac{m}{|g(a)-a|}<\frac{\sqrt{m}}{c},
$$

therefore

$$
\frac{1}{a}-a>\left(g(a)-\frac{\sqrt{m}}{c}\right)-(g(a)-c \sqrt{m})=\left(c-\frac{1}{c}\right) \sqrt{m}=2 \sqrt{m},
$$

and then we easily have $a<\sqrt{m+1}-\sqrt{m}$.
Claim 3. There is some $t_{0} \in(0, \sqrt{m+1}-\sqrt{m})$ such that $2 g\left(t_{0}\right)=t_{0}+\frac{1}{t_{0}}$.
Proof. For any $t \in\left(0, \frac{1}{2}\right)$, as $g(t) \in(-2,2), \frac{1}{t}>2>g(t)$. Thus

$$
|g(t)-t| \leq \frac{m}{\frac{1}{t}-g(t)}<\frac{m}{\frac{1}{t}-2} \quad \forall t \in\left(0, \frac{1}{2}\right) .
$$

This implies $\lim _{t \rightarrow 0^{+}}|g(t)-t|=0$ or $\lim _{t \rightarrow 0^{+}} g(t)=0$. Moreover, since $\lim _{t \rightarrow 0^{+}}\left(t+\frac{1}{t}\right)=\infty$, there exists $b \in(0, a)$ small enough such that $2 g(b)<b+\frac{1}{b}$. Considering the function $h(t):=$ $2 g(t)-t-\frac{1}{t}$, we see that h is continuous on $(0,1)$ while $h(b)<0$ and $h(a)>0$. Thus, there is some $t_{0} \in(b, a)$ such that $h\left(t_{0}\right)=0$, or $2 g\left(t_{0}\right)=t_{0}+\frac{1}{t_{0}}$. Because $a<\sqrt{m+1}-\sqrt{m}$ by Claim $2, t_{0} \in(0, \sqrt{m+1}-\sqrt{m})$.

Claim 4. $\left|g\left(t_{0}\right)-t_{0}\right|\left|g\left(t_{0}\right)-\frac{1}{t_{0}}\right|>m$, which gives the contradiction.
Proof. From Claim 3, we have

$$
\left|g\left(t_{0}\right)-t_{0}\right|=\frac{1}{2}\left(\frac{1}{t_{0}}-t_{0}\right)=\left|g\left(t_{0}\right)-\frac{1}{t_{0}}\right|,
$$

and

$$
\frac{1}{t_{0}}-t_{0}>\frac{1}{\sqrt{m+1}-\sqrt{m}}-(\sqrt{m+1}-\sqrt{m})=2 \sqrt{m} .
$$

Thus

$$
\left|g\left(t_{0}\right)-t_{0}\right|\left|g\left(t_{0}\right)-\frac{1}{t_{0}}\right|=\frac{1}{4}\left(t_{0}-\frac{1}{t_{0}}\right)^{2}>\frac{1}{4}(2 \sqrt{m})^{2}=m .
$$

Therefore, there is no $a \in(0,1)$ such that $|g(a)-a|>c \sqrt{m}$. The solution is completed.

