KAIST POW 2017-03

Inhyeok Choi

March 22, 2017

Problem. For an integer $n \geq 4$, find the solutions of the equation

$$
\sum_{k=1}^{n} \frac{\sin \frac{k \pi}{n+1}}{\sin \left(\frac{k \pi}{n+1}-x\right)}=0
$$

Solution. We observe that

$$
\sum_{k=1}^{n} \frac{\sin \frac{k \pi}{n+1}}{\sin \left(\frac{k \pi}{n+1}-x\right)}=\sum_{k=1}^{n} \frac{e^{2 k \pi i /(n+1)}-1}{e^{2 k \pi i /(n+1)-2 i x}-1} \cdot e^{-i x}=0 \Leftrightarrow \sum_{k=1}^{n} \frac{e^{2 k \pi i /(n+1)}-1}{e^{2 k \pi i /(n+1)-2 i x}-1}=0 .
$$

Here, for each $k=1, \cdots, n$, we define

$$
w_{k}=\frac{e^{2 k \pi i /(n+1)}-1}{e^{2 k \pi i /(n+1)-2 i x}-1}, \text { i.e., } e^{2 k \pi i /(n+1)}=\frac{w_{k}-1}{e^{-2 i x} w_{k}-1} .
$$

Because $e^{2 k \pi i /(n+1)}$ are distinct, w_{k} are also disticnt. Moreover, w_{k} are nonzero because $e^{2 k \pi i /(n+1)}-1 \neq 0$. Note that $0, w_{1}, \cdots, w_{n}$ are solutions of $(x-1)^{n+1}=\left(e^{-2 i x} x-1\right)^{n+1}$.

Unless $\left(e^{-2 i x}\right)^{n+1}=1,(x-1)^{n+1}-\left(e^{-2 i x} x-1\right)^{n+1}$ becomes a polynomial of degree $n+1$ with zeroes $0, w_{1}, \cdots, w_{n}$. Sum of these numbers are $n-e^{-2 i n x} n$, which becomes 0 when $x=\frac{t \pi}{n}$ for some $t \in \mathbb{Z} \backslash n \mathbb{Z}$. When $\left(e^{-2 i x}\right)^{n+1}=1$, i.e. $x=m \pi /(n+1)$ for some $m \in \mathbb{Z}$, original sum is either not defined, becomes m or $-m$, so it cannot be a solution. Thus, the solutions are $x=\frac{t \pi}{n}$ for $t \in \mathbb{Z} \backslash n \mathbb{Z}$.

