KAIST POW 2017-02

15학번 유찬진

2017년 3월 12일

Problem. Let $a_{1}, a_{2}, \cdots, a_{n}$ be distinct points in \mathbb{R}^{4}. Does there exist a nonzero polynomial $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $\operatorname{deg} p \leq\left\lceil\sqrt{5} n^{1 / 4}\right\rceil$ and $p\left(a_{i}\right)=0$ for all $i=1,2, \cdots, n$?

Solution. Let $P_{m}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be the set of all real polynomials in variables x_{1}, x_{2}, x_{3}, and x_{4} whose degree is less than or equal to m. It is a vector space over \mathbb{R} with dimension

$$
\left(\binom{5}{m}\right)=\binom{5+m-1}{m}=\frac{1}{24}(m+4)(m+3)(m+2)(m+1)
$$

since

$$
\left\{\prod_{k=1}^{4} x_{k}^{i_{k}}: \text { for each } k, i_{k} \geq 0 \text { and } \sum_{j=1}^{4} i_{j} \leq m\right\}
$$

is a basis for $P_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ over \mathbb{R}. Note that each element corresponds to a nonnegative integral solution $\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)$ of $\sum_{j=1}^{5} i_{j}=m$.

Let $m=\left\lceil\sqrt{5} n^{1 / 4}\right\rceil$. The dimension of $P_{m}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is

$$
d:=\frac{1}{24}(m+4)(m+3)(m+2)(m+1)>\frac{m^{4}}{25} \geq n
$$

Denote the basis elements by p_{1}, \cdots, p_{d}. Any $p \in P_{m}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ can be written as $p=\sum_{j=1}^{d} c_{j} p_{j}$ where $c_{j} \in \mathbb{R}$. If it is applied to $a_{i}, i=1, \cdots, n$, we obtain a system of linear equations $A \mathbf{x}=\mathbf{0}$, where $A=\left[p_{j}\left(a_{i}\right)\right]_{n \times d}$ and $\mathbf{x}=\left[c_{j}\right]_{d \times 1}$. Since $d>n, \operatorname{rank} A \leq \min \{d, n\}<d$. It follows that the system has a nontrivial solution $\mathbf{x}=\left[c_{j}\right]_{d \times 1}$. The polynomial p determined by these $c_{j}, j=1, \cdots, d$, satisfies all the conditions, so we have a positive answer to the question.

