## 김기현 (수리과학과 석박통합, 16학번)

Problem. Suppose that $z_{1}, \ldots, z_{n}$ are complex numbers satisfying $\sum_{k=1}^{n} z_{k}=0$. Prove that

$$
\sum_{k=1}^{n}\left|z_{k+1}-z_{k}\right|^{2} \geq 4 \sin ^{2}\left(\frac{\pi}{n}\right) \sum_{k=1}^{n}\left|z_{k}\right|^{2}
$$

where we let $z_{n+1}=z_{1}$.
proof) We may let $n \geq 3$ because the inequality is trivival when $n=1,2$. We will use the Fourier transform on a finite abelian group. Set $G=\mathbb{Z} / n \mathbb{Z}=\widehat{G}$ where $\widehat{G}$ is the Pontryagin dual of $G$. Define $f, g \in L^{2}(G)$ by $f(k):=z_{k}, g(k):=z_{k+1}-z_{k}$ and observe that

$$
\widehat{g}(\xi)=\left(e^{\frac{2 \pi i \xi}{n}}-1\right) \widehat{f}(\xi) \quad \forall \xi \in \widehat{G} .
$$

Also, since we are given that $\widehat{f}(0)=\frac{1}{n} \sum_{k=1}^{n} z_{k}=0$, we have

$$
\sum_{\xi \in \widehat{G}}|\widehat{g}(\xi)|^{2} \geq \inf _{\xi \in \widehat{G} \backslash\{0\}}\left|e^{\frac{2 \pi i \xi}{n}}-1\right|^{2} \cdot \sum_{\xi \in \widehat{G} \backslash\{0\}}|\widehat{f}(\xi)|^{2}=4 \sin ^{2}\left(\frac{\pi}{n}\right) \sum_{\xi \in \widehat{G}}|\widehat{f}(\xi)|^{2} .
$$

Applying the Plancherel theorem completes the proof.
Remark. By inspecting the above inequality, equality holds if and only if " $\widehat{f}(\xi)=0$ for all $\xi \neq 1, n-1$ ". Since the Fourier transform $\mathscr{F}: L^{2}(G) \rightarrow L^{2}(\widehat{G})$ is invertible, the set of all such functions forms a two dimensional subspace of $L^{2}(G)$. In fact, it has a basis $\left\{f_{1}, f_{2}\right\}$ where

$$
f_{1}: k \mapsto e^{\frac{2 \pi i k}{n}}, \quad \text { and } \quad f_{2}: k \mapsto e^{-\frac{2 \pi i k}{n}} \quad \forall k \in G .
$$

Therefore, the equality holds if and only if

$$
z_{k}=c e^{\frac{2 \pi i k}{n}}+d e^{-\frac{2 \pi i k}{n}} \quad \forall k=1, \ldots, n
$$

for some $c, d \in \mathbb{C}$.

