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Problem. Suppose that zj,...,z, are complex numbers satisfying Z Zx = 0. Prove that
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where we let 7,11 = z3.

proof) We may let n > 3 because the inequality is trivival when n = 1,2. We will use the Fourier
transform on a finite abelian group. Set G = Z/nZ = G where G is the Pontryagin dual of G. Define
f,g € L*(G) by f(k) := z, g(k) := 7z 1 — z and observe that
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Also, since we are given that f(0) = — Z zx = 0, we have
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Applying the Plancherel theorem completes the proof.
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Remark. By inspecting the above inequality, equality holds if and only if “f(§) =0 forall £ £ 1,n—1".
Since the Fourier transform .% : L2(G) — L2(G) is invertible, the set of all such functions forms a two

dimensional subspace of L?(G). In fact, it has a basis {f|, f»} where
2mik _ 2mik
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Therefore, the equality holds if and only if
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for some c¢,d € C.



