POW 2016-23

Problem. Suppose that z_1, \ldots, z_n are complex numbers satisfying $\sum_{k=1}^n z_k = 0$. Prove that

$$\sum_{k=1}^{n} |z_{k+1} - z_k|^2 \ge 4\sin^2\left(\frac{\pi}{n}\right) \sum_{k=1}^{n} |z_k|^2.$$

where we let $z_{n+1} = z_1$.

proof) We may let $n \ge 3$ because the inequality is trivival when n = 1, 2. We will use the Fourier transform on a finite abelian group. Set $G = \mathbb{Z}/n\mathbb{Z} = \widehat{G}$ where \widehat{G} is the Pontryagin dual of G. Define $f, g \in L^2(G)$ by $f(k) \coloneqq z_k, g(k) \coloneqq z_{k+1} - z_k$ and observe that

$$\widehat{g}(\xi) = (e^{\frac{2\pi i\xi}{n}} - 1)\widehat{f}(\xi) \qquad \forall \xi \in \widehat{G}.$$

Also, since we are given that $\hat{f}(0) = \frac{1}{n} \sum_{k=1}^{n} z_k = 0$, we have

$$\sum_{\xi\in\widehat{G}}|\widehat{g}(\xi)|^2\geq \inf_{\xi\in\widehat{G}\setminus\{0\}}|e^{\frac{2\pi i\xi}{n}}-1|^2\cdot\sum_{\xi\in\widehat{G}\setminus\{0\}}|\widehat{f}(\xi)|^2=4\sin^2\left(\frac{\pi}{n}\right)\sum_{\xi\in\widehat{G}}|\widehat{f}(\xi)|^2.$$

Applying the Plancherel theorem completes the proof.

Remark. By inspecting the above inequality, equality holds if and only if " $\hat{f}(\xi) = 0$ for all $\xi \neq 1, n-1$ ". Since the Fourier transform $\mathscr{F}: L^2(G) \to L^2(\widehat{G})$ is invertible, the set of all such functions forms a two dimensional subspace of $L^2(G)$. In fact, it has a basis $\{f_1, f_2\}$ where

$$f_1: k \mapsto e^{\frac{2\pi i k}{n}}$$
, and $f_2: k \mapsto e^{-\frac{2\pi i k}{n}} \quad \forall k \in G.$

Therefore, the equality holds if and only if

$$z_k = c e^{\frac{2\pi i k}{n}} + d e^{-\frac{2\pi i k}{n}} \qquad \forall k = 1, \dots, n$$

for some $c, d \in \mathbb{C}$.