POW 2016-20

Joonhyung Shin

November 15, 2016

If n = 0 there is nothing to prove, so assume $n \ge 1$. Before proving the statement, we will observe the following lemma.

Lemma 1. Let V_1, V_2, \cdots be countably many k-dimensional subspaces of \mathbb{R}^n for k < n. Then there is a vector \mathbf{x} such that $\mathbf{x} \notin V_i$ for $i \geq 1$.

Proof. We proceed by induction on n. If n = 1, then simply take \mathbf{x} as any nonzero vector. Now assume inductively for n - 1. Extend each subspace V_1, V_2, \cdots with some vectors so that dim $V_i = n - 1$ for $i \ge 1$. Then V_i can be represented in the form of $\mathbf{a}_i \cdot \mathbf{x} = 0$, where $||\mathbf{a}_i|| = 1$. Note that the collection is countable where the set of vectors with $||\mathbf{a}|| = 1$ is uncountable. Hence, we can take \mathbf{a}_0 so that it does not appear in the collection of \mathbf{a}_i 's and $||\mathbf{a}_0|| = 1$. Then the (n-1)-dimensional subspace V_0 represented by $\mathbf{a}_0 \cdot \mathbf{x} = 0$ differs from any of the subspaces given. Hence, a subspace $W_i = V_0 \cap V_i$ has dimension n-2 and is contained in V_0 . Note that V_0 becomes identical to \mathbb{R}^{n-1} by applying some rigid motions. Hence by the inductive hypothesis, there is a vector $\mathbf{x} \in V_0$ such that $\mathbf{x} \notin W_i$ for $i \ge 1$. Then $\mathbf{x} \notin V_i$ for each i, completing the proof of the lemma.

Now we prove the original statement. We will proceed by induction on k, but in reverse order. If k = n then just take the trivial subspace $W = \{0\}$. Now assume inductively for k + 1. Let \mathbf{x} be a vector produced by Lemma 1. Then the dimension of the subspace W_i spanned by V_i and \mathbf{x} is k + 1. Thus by the inductive hypothesis, there is an (n - 1 - k)-dimensional subspace W_0 with dim $W_i \cap W_0 = 0$ for $i \ge 1$. Hence, the subspace W spanned by W_0 and \mathbf{x} is (n - k)-dimensional and dim $W \cap V_i = 0$ as desired.