POW 2016-1

Lee, Jongwon

For a real number s such that $-\frac{1}{2} \le s \le 0$, call the following sequence of $\{\epsilon_i\}$, a s-good sequence.

Define p_i as $s + \sum_{k=1}^{j} \epsilon_i x_i$, and ofcourse, $p_0 = s$. Then, $\{\epsilon_i\}$ is called a s-good sequence if $\epsilon_i = \frac{1}{2}$ when $p_{i-1} < 0$ and $\epsilon_i = -\frac{1}{2}$ when $p_{i-1} > 0$. Then, we call p_n a s-exciting value. Also, it is obvious that $|p_i| \leq \frac{1}{2}$ for all s-good sequences $\{\epsilon_i\}$.

Note that an s-good sequence can be determined from i = 1 to n inductively, and uniquely if p_i never becomes zero. Therefore, for all but finitely many values s, s-exciting value is unique.

Now if $p_i = 0$ for some *i*, we have to choices for the sign of ϵ_{i+1} . To make ϵ_{i+1} the opposite sign, we can just flip the whole sign of ϵ_j for all j > i. Even in the case when there are more than one *i* such that $p_i = 0$, we can start flipping from the front making all ϵ_{i+1} 's the signs we want. But then, note that in this case, p_n only changes its sign, and *s*-exciting values are $\{x, -x\}$ for some *x*.

Suppose we are increasing s and observing s-exciting values. When p_i 's are not zero for all i, the unique s-exciting value increases with slope 1 w.r.t. s. When s meets a point where $p_i = 0$ for some i's, then to continue increasing p_n with slope 1 w.r.t. s, we have to flip signs appropriately. Specifically, ϵ_{i+1} must be -1/2 for all i with $p_i = 0$. After flipping signs appropriately, we can begin increasing s and p_n with the same slope.

With the observations we have made, we can conclude that $|p_n|$ is a continuous function of s, say f(s), and it has slope ± 1 except for finitely many points, and a cusp when the slope changes. Also, for an open interval where f(s) has slope 1, f(s) is the unique s-exciting value, for an open interval where f(s) has slope -1, -f(s) is the unique s-exciting value, and in a cusp, $\pm f(s)$ are s-exciting values.

Now we show that there exists s such that -s is a s-exciting value.

Since $f(-\frac{1}{2}) \leq \frac{1}{2}$ and $f(0) \geq 0$, by the intermediate value theorem, there exists $s_0 \in [-1/2, 0]$ such that $f(s_0) = |s_0| = -s_0$. If s_0 belongs to an open interval with slope 1, or if f(s) is a cusp in $s = s_0$, then $-s_0$ is a s_0 -exciting value as we wanted.

Now suppose s belongs to a maximal open interval (a, b) such that f has slope -1 in the interval. Then, f(b) is a cusp or b must be 0. If b = 0, f(0) = 0, so that -0 is a 0-exciting value as we wanted. If f(b) is a cusp, then -b = f(b) is a b-exciting value. Now if $\{\epsilon_i\}$ is a s-good sequence such that $p_n = -s$, then

$$\begin{split} \left| \sum_{i=1}^{k} \epsilon_{i} x_{i} - \sum_{i=k+1}^{n} \epsilon_{i} x_{i} \right| &\leq \left| \sum_{i=1}^{k} \epsilon_{i} x_{i} \right| + \left| \sum_{i=k+1}^{n} \epsilon_{i} x_{i} \right| \\ &= \left| p_{k} - p_{0} \right| + \left| p_{n} - p_{k} \right| \\ &= \left| p_{k} - s \right| + \left| p_{k} + s \right| \\ &\leq \max \left(\left| \frac{1}{2} - s \right| + \left| \frac{1}{2} + s \right|, \left| - \frac{1}{2} - s \right| + \left| - \frac{1}{2} + s \right| \right) = 1 \end{split}$$

where the last inequality holds from the convexity of |x - s| + |x + s|.