POW 2015-23

2014**** Lee, Jongwon

Given $x \in[0,1)$, let $0 . a_{1} a_{2} \ldots$ be an infinite binary expansion of x, possibly adding zeroes if a binary expansion is finite. We shall say that this expansion if 'nice' if it contains infinitely many zeroes.

Firstly, there is a bijection between all nice binary expansions and $[0,1)$, since for any binary expansion, if we see ...011111..., we can change it to ... 100000

Also, if $x=0 . a_{1} a_{2} \ldots$ is a nice binary expansion, $0 \leq 2 x<1$ iff $a_{1}=0$. This is because since x cannot equal $0.111 \ldots$, we have $x<0.11 \ldots=1 / 2$.

Therefore, it is clear to see that $f(x)=0 . a_{2} a_{3} \ldots$, so $f^{7}(x)=x$ is equivalent to the sequence $\left\{a_{i}\right\}$ having a period 7 . This is equivalent to x in the form

$$
n\left(2^{-7}+2^{-14}+\ldots\right)=\frac{n}{127}
$$

where $0 \leq n \leq 126$.

