POW 2015-23

2014**** Lee, Jongwon

Given $x \in [0, 1)$, let $0.a_1a_2...$ be an infinite binary expansion of x, possibly adding zeroes if a binary expansion is finite. We shall say that this expansion if 'nice' if it contains infinitely many zeroes.

Firstly, there is a bijection between all nice binary expansions and [0, 1), since for any binary expansion, if we see ... 011111..., we can change it to ... 100000....

Also, if $x = 0.a_1a_2...$ is a nice binary expansion, $0 \le 2x < 1$ iff $a_1 = 0$. This is because since x cannot equal 0.111..., we have x < 0.11... = 1/2.

Therefore, it is clear to see that $f(x) = 0.a_2a_3...$, so $f^7(x) = x$ is equivalent to the sequence $\{a_i\}$ having a period 7. This is equivalent to x in the form

$$n\left(2^{-7} + 2^{-14} + \ldots\right) = \frac{n}{127}$$

where $0 \le n \le 126$.