POW 2015-20

2014**** Lee, Jongwon

Let S be the set of real numbers in $[0,1)$ where the base- 8 expansion consists of 1 and 4 except for finitely many digits. For an elements $x \in S$, let $x=$ $0 . a_{1} \ldots a_{k} b_{1} \ldots$, where $b_{i}=1,4$ for all i and $a_{k} \neq 1,4$. Then, define $g(x)$ to be $0 . c_{1} c_{2} \ldots$ where $c_{i}=0$ if $\epsilon_{t}=1$ and $c_{i}=1$ if $\mu_{i}=4$, and read in binary. For all $x \notin S$, let $g(x)=0$. b_i

First, we show that S has measure zero. Let T be the set of real numbers in $[0,1)$ such that the density of 1 in its binary expansion is 0.5 . By the strong law of large numbers, $\mu(T)=1$. Since the binary expansion of an element of S consists of many 001 and 100 's, the density of 1 is $1 / 3$, so that $S \subseteq[0,1]-T$. Therefore, S is a measure zero set.

Secondly, for any open interval I, we show that $g(I)=[0,1]$. Since I is open, there exists k, n such that $\left[\frac{k}{8^{n}}, \frac{k+1}{8^{n}}\right] \subseteq I$. Then, if $\frac{k}{8^{n}}=0 . a_{1} a_{2} \ldots a_{k}$ in base- 8 expansion, I contains all numbers having $a_{1} a_{2} \ldots a_{k}$ as prefix in base- 8 expansion. Especially, it contains all numbers having $a_{1} \ldots a_{k} 0$ as prefix. Then, varying the suffix, we can generate all binary expansions from 0 to 1 as the image of g.

Finally, if we compose g with a bijection from $[0,1]$ to \mathbb{R}, such that 0 maps to 0 , and extend the domain to \mathbb{R} giving period 1 , then we get the desired function.

