Sol) We will construct such a function.

Let C be the Cantor set. It is well-known that Cantor set has same cardinality with [0,1]. Since [0,1] has same cardinality with $R/\{0\}$, there exists a function g from C to $R/\{0\}$ that is surjective (in fact, bijective).

For $x \in C$, let $S_x = \{q + x \mid q \in Q\}$. We will check some properties of S_x in the following claim.

Claim 1) For $\forall x \in C$, S_x is countable and dense. For $a \neq b$ and $a, b \in S$, $S_a \cap S_b = \phi$ or $S_a = S_b$. Also, $x \in S_x$.

- 1) S_x is just a translation of Q, so it is countable and dense.
- 2) Assume that $t \in S_a \cap S_b$. $t = q_1 + a = q_2 + b$. Hence, $b a = k \in Q$. For $\forall r \in S_a$, let $r = q_3 + a$. Then, $r = (q_3 k) + (a + k) = (q_3 k) + b \in S_b$ which means $S_a \subseteq S_b$. Similarly, $S_b \subseteq S_a$. Hence, $S_a = S_b$.
- 3) Trivial because $0 \subseteq Q$.

By Claim 1-2, we can make a family of real numbers $F \subset C$ such that for $\forall a, b \in F$, $S_a = S_b$. Let S_F be a set such that $S_F = S_a$ for $a \in F$. For all family F, F's are pairwise disjoint and their union is C. Also S_F 's are pairwise disjoint.

Before we construct a function f, consider another function.

Claim 2) There exists function $h_1:Q\to N$ that satisfies the following property. Property: For any nonempty open interval I and natural number n, there exists a rational number $t \in I$ such that $h_1(t) = n$.

pf) Let p_k be the kth smallest prime number. Let h_1 be a function such that $h_1(0)=1$, and for a rational number $t=\frac{q}{p}$ ($p{\in}N,\ q{\in}Z/\{0\}$. p and q are relatively prime),

 $h_1(t) = k$ if p_k is the smallest prime number that divides p. Now we will show that h_1 meets the given condition. Let I = (a, b) be an arbitrary open interval, and n a natural number. For sufficiently large $m \in N$, there exists an nonzero integer s that satisfies

$$p_n^m a < s < p_n^m b. \ \ \text{Then} \ \ h_1(t) = n \ \ \text{for} \ \ t = \frac{s}{p_n^m} {\in} I.$$

Now, we will construct a function f that satisfies the conditions. Map a real number t by the following cases.

Case 1) t is not an element of any of S_F f(t) = 0 (i.e. map t to zero by f).

Case 2) t is an element of S_F for the proper family F.

By Claim 1-3, for $\forall x{\in}F,\ x{\in}S_x = S_F$. Hence, $F{\subset}S_F$. Since S_F is countable by Claim 1-1, F is also countable (no matter it has finite or infinitely many elements). So there exists a surjective function $h_0: N \to F$. Let h_2 be a translation function from S_F to Q. Let h_1 be a function from Claim 2. Let $h_F: S_F \to F$ be a function such that $h_F = h_0 \circ h_1 \circ h_2$, which is obviously surjective. Since S_F is a translation of Q and h_2 is a translation function, the Property of h_1 stated in Claim 2 can be applied to h_F . Property: For any nonempty open interval I and $k{\in}F$, there exists a real number $l{\in}S_F \cap I$ such that $h_F(l) = k$.

Let
$$f(t) = (g \circ h_F)(t)$$
 (i.e. map t to $g(h_F(t))$ by f)

f is indeed a function since S_F 's are pairwise disjoint. Now, we will show that f meets all the conditions given.

- (1) $f \equiv 0$ almost everywhere.
- pf) It is enough to show that $\bigcup_{x \in C} S_x$ is measure zero. Note that the Cantor set C is well-known to be measure zero. By the idea of double counting, it is easy to see that $\bigcup_{x \in C} S_x$ is a countable unions of translations of C ($\because Q$ is countable). Hence $\bigcup_{x \in C} S_x$ is measure zero, since measure is countably additive. So the first condition is proved.
- (2) For any nonempty open interval I, f(I) = R
- pf) Since $f\equiv 0$ almost everywhere, there exists $a{\in}I$ such that f(a)=0. Now, let s be an arbitrary nonzero real number. Since $g\colon C{\to}R/\{0\}$ is surjective, there exists $c{\in}C$ such that g(c)=s. For the family F that contains c, consider the function $h_F\colon S_F{\to}F$ in Case 2. By the Property stated in Case 2, there exists $t{\in}S_F{\cap}I$ such that $h_F(t)=c$. For this t, $f(t)=(g\circ h_F)(t)=s$. So the second condition is proved.

Hence, f is a function that satisfies the given conditions.