POW 2015-20: Dense function

KAIST 수리과학과 14학번 장기정

November 10, 2015

The statement is true. Define a function $f: \mathbf{R} \to \mathbf{R}$ as below:

$$f(x) := \begin{cases} L & \text{if } \lim_{n \to \infty} \tan n! \pi x \text{ exists and it equals to } L \\ 0 & \text{otherwise} \end{cases}$$

for every $x \in \mathbf{R}$. Then f satisfies following properties:

Proposition 1. f = 0 almost everywhere.

Proof. Since $f(z) = \tan \pi z$ is continuous at its domain with period 1 when it is injective within single period, existence of $\lim_{n\to\infty} \tan n!\pi x$ is equivalent to convergence of fractional value of n!x, but this sequence is equidistributed for almost every x(hence limit diverges), hence f equals zero for almost every x. We may need additional explanation for this 'almost everywhere' part.

Lemma 1. Let (a_n) , n = 1, 2, cdots, be a given sequence of distinct integers. Then the sequence $\{a_nx\}$ is equidistributed for almost all real numbers x.

Proof. Well-known theorem. One proof can be given from Theorem 4.1, Uniform Distribution of Sequences (Wiley Interscience), by L. Kuipers and H. Niederreiter. $\hfill\Box$

Proposition 2. f is surjective in any nonempty open interval : in other words, for any given a < b and c, we can find $x \in (a,b)$ that f(x) = c.

Proof. Before proving this statement, Let us prove "periodicity" of f.

Lemma 2. f is periodic for every rational period : in other words, f(x+q) = f(x) for every $x \in \mathbf{R}$ and $q \in \mathbf{Q}$.

Proof. It is somewhat trivial: write q = m/n, then it is immediate to check that $\tan((n')!\pi x) = \tan((n')!\pi(x+q))$ for every $n' \geq 2n$, Hence x and x+q shares existence of limit and value if it exists, which means they have equal function value.

Hence, it remains to show that f is surjecttive, since we can put in any open interval by adding appropriate rational number.

Let $c \in \mathbf{R}$, then there exists $r \in [0,1)$ that $\tan(\pi r) = c$. Then define x by

$$x = \sum_{n=0}^{\infty} \frac{\lfloor nr \rfloor}{n!}.$$

since $0 \le \lfloor nr \rfloor / n! \le 1/n!$ and $\sum_{n=0}^{\infty} 1/n! = e$ converges, we can verify that the series converges by using comparison method.

Write real sequence x_n, ϵ_n by

$$x_n = \sum_{k=0}^n \frac{\lfloor kr \rfloor}{k!}$$

$$\epsilon_n = x - x_n = \sum_{k=n+1}^\infty \frac{\lfloor kr \rfloor}{k!}.$$

Then, we have $n!x_n$ is an integer, hence $\tan(n!\pi x) = \tan(n!\pi\epsilon_n)$. Moreover,

$$n!\epsilon_n = \frac{\lfloor (n+1)r \rfloor}{n+1} + n! \sum_{k=n+2}^{\infty} \frac{\lfloor kr \rfloor}{k!}.$$

and we can verify that

$$\lim_{n \to \infty} \lfloor (n+1)r \rfloor n + 1 = r$$

and

$$\lim_{n \to \infty} n! \sum_{k=n+2}^{\infty} \frac{\lfloor kr \rfloor}{k!} = 0.$$

, where second statement holds since $n! \lfloor kr \rfloor / k! \le 1/(n+1)1/(k-n-1)!$ for every $k \ge n+2$ while $\sum_{k=n+2}^{\infty} 1/(n+1)1/(k-n-1)! = (e-1)/(n+1) \to 0$ as $n \to \infty$. Therefore, we have $\lim_{n \to \infty} n! \pi \epsilon_n = \pi r$.

Hence, $\lim_{n\to\infty} \tan n! \pi x = \lim_{n\to\infty} \tan n! \pi \epsilon_n = \tan \pi r = c$ from continuity of \tan , so f(x) = c.

Hence f becomes example proving that the statement is true.