POW 2015-20 : Dense function

KAIST 수리과학과 14 학번 장기정

November 10, 2015

The statement is true. Define a function $f: \mathbf{R} \rightarrow \mathbf{R}$ as below:

$$
f(x):= \begin{cases}L & \text { if } \lim _{n \rightarrow \infty} \tan n!\pi x \text { exists and it equals to } L \\ 0 & \text { otherwise }\end{cases}
$$

for every $x \in \mathbf{R}$. Then f satisfies following properties:
Proposition 1. $f=0$ almost everywhere.
Proof. Since $f(z)=\tan \pi z$ is continuous at its domain with period 1 when it is injective within single period, existence of $\lim _{n \rightarrow \infty} \tan n!\pi x$ is equivalent to convergence of fractional value of $n!x$, but this sequence is equidistributed for almost every x (hence limit diverges), hence f equals zero for almost every x. We may need additional explanation for this 'almost everywhere' part.
Lemma 1. Let $\left(a_{n}\right), n=1,2, c d o t s$, be a given sequence of distinct integers. Then the sequence $\left\{a_{n} x\right\}$ is equidistributed for almost all real numbers x.

Proof. Well-known theorem. One proof can be given from Theorem 4.1, Uniform Distribution of Sequences (Wiley Interscience), by L. Kuipers and H. Niederreiter.

Proposition 2. f is surjective in any nonempty open interval : in other words, for any given $a<b$ and c, we can find $x \in(a, b)$ that $f(x)=c$.

Proof. Before proving this statement, Let us prove "periodicity" of f.
Lemma 2. f is periodic for every rational period : in other words, $f(x+q)=$ $f(x)$ for every $x \in \mathbf{R}$ and $q \in \mathbf{Q}$.

Proof. It is somewhat trivial : write $q=m / n$, then it is immediate to check that $\tan \left(\left(n^{\prime}\right)!\pi x\right)=\tan \left(\left(n^{\prime}\right)!\pi(x+q)\right)$ for every $n^{\prime} \geq 2 n$, Hence x and $x+q$ shares existence of limit and value if it exists, which means they have equal function value.

Hence, it remains to show that f is surjecttive, since we can put in any open interval by adding appropriate rational number.
Let $c \in \mathbf{R}$, then there exists $r \in[0,1)$ that $\tan (\pi r)=c$. Then define x by

$$
x=\sum_{n=0}^{\infty} \frac{\lfloor n r\rfloor}{n!} .
$$

since $0 \leq\lfloor n r\rfloor / n!\leq=1 / n!$ and $\sum_{n=0}^{\infty} 1 / n!=e$ converges, we can verify that the series converges by using comparison method.
Write real sequence x_{n}, ϵ_{n} by

$$
\begin{aligned}
& x_{n}=\sum_{k=0}^{n} \frac{\lfloor k r\rfloor}{k!} \\
& \epsilon_{n}=x-x_{n}=\sum_{k=n+1}^{\infty} \frac{\lfloor k r\rfloor}{k!} .
\end{aligned}
$$

Then, we have $n!x_{n}$ is an integer, hence $\tan (n!\pi x)=\tan \left(n!\pi \epsilon_{n}\right)$. Moreover,

$$
n!\epsilon_{n}=\frac{\lfloor(n+1) r\rfloor}{n+1}+n!\sum_{k=n+2}^{\infty} \frac{\lfloor k r\rfloor}{k!} .
$$

and we can verify that

$$
\lim _{n \rightarrow \infty}\lfloor(n+1) r\rfloor n+1=r
$$

and

$$
\lim _{n \rightarrow \infty} n!\sum_{k=n+2}^{\infty} \frac{\lfloor k r\rfloor}{k!}=0
$$

, where second statement holds since $n!\lfloor k r\rfloor / k!\leq 1 /(n+1) 1 /(k-n-1)$! for every $k \geq n+2$ while $\sum_{k=n+2}^{\infty} 1 /(n+1) 1 /(k-n-1)!=(e-1) /(n+1) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, we have $\lim _{n \rightarrow \infty} n!\pi \epsilon_{n}=\pi r$.
Hence, $\lim _{n \rightarrow \infty} \tan n!\pi x=\lim _{n \rightarrow \infty} \tan n!\pi \epsilon_{n}=\tan \pi r=c$ from continuity of tan, so $f(x)=c$.

Hence f becomes example proving that the statement is true.

