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When ¢ =0, [, 1/ cosh?(x)dx = tanh(co) — tanh(0) = 1. From now on, we assume ¢ > 0 by taking
|c| if necessary.

We'll prove that
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where n € N, a > 0. Because we have the power series
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for r = (m + %)m’, the residues can be easily calculated,
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So we have
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If we send n to oo, then RHS converges to L LHS is
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, and as n and a goes to oo, the first term converges to [*7_e“*/ cosh?(z)dz. The second term is bounded
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, S0 it vanishes as n,a — oco. The third term is bounded by
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, and it also vanishes as n,a — oco. Therefore we conclude
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