POW 2015-22

Sunghyuk Park, '14

November 24, 2015

When c = 0, $\int_0^\infty 1/\cosh^2(x)dx = \tanh(\infty) - \tanh(0) = 1$. From now on, we assume c > 0 by taking |c| if necessary.

We'll prove that

$$\int_0^\infty \frac{\cos(cx)}{\cosh^2 x} dx = \frac{c\pi/2}{\sinh(c\pi/2)}$$

Consider the integration of $\frac{e^{cix}}{\cosh^2 x}$ along the rectangular contour R:

where $n \in \mathbb{N}$, a > 0. Because we have the power series

$$e^{cix} = e^{cir} \left(1 + ci(x-r) + \frac{(ci(x-r))^2}{2!} + \cdots \right)$$

$$\cosh^2 x = -\frac{1}{2} \left(\frac{2^2}{2!} (x-r)^2 + \frac{2^4}{4!} (x-r)^4 + \cdots \right)$$

for $r = (m + \frac{1}{2})\pi i$, the residues can be easily calculated,

$$\operatorname{Res}\left(\frac{e^{cix}}{\cosh^2 x}, (m+\frac{1}{2})\pi i\right) = -ce^{-c(m+\frac{1}{2})\pi}i.$$

So we have

$$\int_{R} \frac{e^{cix}}{\cosh^{2} x} dx = 2\pi i \sum_{m=0}^{n-1} -ce^{-c(m+\frac{1}{2})\pi} i$$

If we send n to ∞ , then RHS converges to $\frac{c\pi}{\sinh(c\pi/2)}$. LHS is

$$\int_{A} \frac{e^{cix}}{\cosh^2 x} dx + \int_{C} \frac{e^{cix}}{\cosh^2 x} dx + \int_{B+D} \frac{e^{cix}}{\cosh^2 x} dx$$

, and as n and a goes to ∞ , the first term converges to $\int_{-\infty}^{\infty} e^{cix} / \cosh^2(x) dx$. The second term is bounded by

$$\left| \int_C \frac{e^{cix}}{\cosh^2 x} dx \right| \le \int_{-a}^a \frac{e^{-c\pi n}}{\cosh^2 x} dx < e^{-c\pi n}$$

, so it vanishes as $n, a \to \infty$. The third term is bounded by

$$\left| \int_{B+D} \frac{e^{cix}}{\cosh^2 x} dx \right| \le 2 \int_0^n \frac{e^{-ct}}{e^a - e^{-a}} dt < \frac{2}{c(e^a - e^{-a})}$$

, and it also vanishes as $n,a \rightarrow \infty.$ Therefore we conclude

$$\int_0^\infty \frac{\cos(cx)}{\cosh^2 x} dx = \frac{1}{2} \Re \left(\int_{-\infty}^\infty \frac{e^{cix}}{\cosh^2 x} dx \right) = \frac{c\pi/2}{\sinh(c\pi/2)}.$$

r		
L		
L		