POW 2015-22

Sunghyuk Park, '14
November 24, 2015

When $c=0, \int_{0}^{\infty} 1 / \cosh ^{2}(x) d x=\tanh (\infty)-\tanh (0)=1$. From now on, we assume $c>0$ by taking $|c|$ if necessary.

We'll prove that

$$
\int_{0}^{\infty} \frac{\cos (c x)}{\cosh ^{2} x} d x=\frac{c \pi / 2}{\sinh (c \pi / 2)}
$$

Consider the integration of $\frac{e^{c i x}}{\cosh ^{2} x}$ along the rectangular contour R :

where $n \in \mathbb{N}, a>0$. Because we have the power series

$$
\begin{aligned}
& e^{c i x}=e^{c i r}\left(1+c i(x-r)+\frac{(c i(x-r))^{2}}{2!}+\cdots\right) \\
& \cosh ^{2} x=-\frac{1}{2}\left(\frac{2^{2}}{2!}(x-r)^{2}+\frac{2^{4}}{4!}(x-r)^{4}+\cdots\right)
\end{aligned}
$$

for $r=\left(m+\frac{1}{2}\right) \pi i$, the residues can be easily calculated,

$$
\operatorname{Res}\left(\frac{e^{c i x}}{\cosh ^{2} x},\left(m+\frac{1}{2}\right) \pi i\right)=-c e^{-c\left(m+\frac{1}{2}\right) \pi} i
$$

So we have

$$
\int_{R} \frac{e^{c i x}}{\cosh ^{2} x} d x=2 \pi i \sum_{m=0}^{n-1}-c e^{-c\left(m+\frac{1}{2}\right) \pi} i
$$

If we send n to ∞, then RHS converges to $\frac{c \pi}{\sinh (c \pi / 2)}$. LHS is

$$
\int_{A} \frac{e^{c i x}}{\cosh ^{2} x} d x+\int_{C} \frac{e^{c i x}}{\cosh ^{2} x} d x+\int_{B+D} \frac{e^{c i x}}{\cosh ^{2} x} d x
$$

, and as n and a goes to ∞, the first term converges to $\int_{-\infty}^{\infty} e^{c i x} / \cosh ^{2}(x) d x$. The second term is bounded by

$$
\left|\int_{C} \frac{e^{c i x}}{\cosh ^{2} x} d x\right| \leq \int_{-a}^{a} \frac{e^{-c \pi n}}{\cosh ^{2} x} d x<e^{-c \pi n}
$$

, so it vanishes as $n, a \rightarrow \infty$. The third term is bounded by

$$
\left|\int_{B+D} \frac{e^{c i x}}{\cosh ^{2} x} d x\right| \leq 2 \int_{0}^{n} \frac{e^{-c t}}{e^{a}-e^{-a}} d t<\frac{2}{c\left(e^{a}-e^{-a}\right)}
$$

, and it also vanishes as $n, a \rightarrow \infty$. Therefore we conclude

$$
\int_{0}^{\infty} \frac{\cos (c x)}{\cosh ^{2} x} d x=\frac{1}{2} \Re \mathfrak{R e}\left(\int_{-\infty}^{\infty} \frac{e^{c i x}}{\cosh ^{2} x} d x\right)=\frac{c \pi / 2}{\sinh (c \pi / 2)}
$$

