Sol)
Let $D_{n}=\operatorname{det}\left(A_{n}\right)$. Using cofactor expansion to the first row, we obtain the following.
$D_{n}=\operatorname{det}\left(\left[\begin{array}{ccccc}1 & x & 0 & \cdots & 0 \\ x & 1 & x & \cdots & 0 \\ 0 & x & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1\end{array}\right]\right)=1 \cdot D_{n-1}-x \cdot \operatorname{det}\left(\left[\begin{array}{cc}x & X \\ O & A_{n-2}\end{array}\right]\right)=D_{n-1}-x^{2} D_{n-2}$,
where X is an $1 \times(n-2)$ matrix $[x 00 \cdots 0]$, and O is an $(n-2) \times 1$ zero matrix.
It is easy to see the initial conditions $D_{1}=1$ and $D_{2}=1-x^{2}$, so we have to solve the following recurrence relation : $D_{n+2}=D_{n+1}-x^{2} D_{n}(n \geqq 1), D_{1}=1, D_{2}=1-x^{2}$. Its characteristic equation is $r^{2}-r+x^{2}=0$.
i) $x= \pm \frac{1}{2}$

There is only one eigenvalue $\lambda=\frac{1}{2}$, so we can set $D_{n}=\left(\frac{1}{2}\right)^{n-1}(A n+B)$. Based on two initial conditions, we obtain $D_{n}=\left(\frac{1}{2}\right)^{n}(n+1)$.
ii) $x \neq \pm \frac{1}{2}$

There are two eigenvalues λ_{1} and λ_{2}, so $D_{n}=A \lambda_{1}^{n-1}+B \lambda_{2}^{n-1}$, where $\lambda_{1}=\frac{1-\sqrt{1-4 x^{2}}}{2}, \lambda_{2}=\frac{1+\sqrt{1-4 x^{2}}}{2}$. Based on two initial conditions, we obtain $A=\frac{\lambda_{2}-\left(1-x^{2}\right)}{\lambda_{2}-\lambda_{1}}, \quad B=\frac{\left(1-x^{2}\right)-\lambda_{1}}{\lambda_{2}-\lambda_{1}}$.
By i) and ii), we can get the final solution.

$$
D_{n}= \begin{cases}\left(\frac{1}{2}\right)^{n}(n+1) & \left(x= \pm \frac{1}{2}\right) \\ \frac{\lambda_{2}-\left(1-x^{2}\right)}{\lambda_{2}-\lambda_{1}} \lambda_{1}^{n-1}+\frac{\left(1-x^{2}\right)-\lambda_{1}}{\lambda_{2}-\lambda_{1}} \lambda_{2}^{n-1} \quad\left(x \neq \pm \frac{1}{2}\right)\end{cases}
$$

where $\lambda_{1}=\frac{1-\sqrt{1-4 x^{2}}}{2}, \lambda_{2}=\frac{1+\sqrt{1-4 x^{2}}}{2}$.

