POW2015-18

2015 신준형 tonyshin@kaist.ac.kr

Sol)

Let $D_n = \det(A_n)$. Using cofactor expansion to the first row, we obtain the following. $(\begin{bmatrix} 1 & x & 0 & \cdots & 0 \end{bmatrix})$

$$D_{n} = \det \left[\left| \begin{array}{cccc} x & 1 & x & \cdots & 0 \\ 0 & x & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{array} \right| = 1 \cdot D_{n-1} - x \cdot \det \left(\begin{bmatrix} x & X \\ OA_{n-2} \end{bmatrix} \right) = D_{n-1} - x^{2} D_{n-2},$$

where X is an $1 \times (n-2)$ matrix $[x \ 0 \ 0 \cdots \ 0]$, and O is an $(n-2) \times 1$ zero matrix. It is easy to see the initial conditions $D_1 = 1$ and $D_2 = 1 - x^2$, so we have to solve the following recurrence relation : $D_{n+2} = D_{n+1} - x^2 D_n$ $(n \ge 1)$, $D_1 = 1$, $D_2 = 1 - x^2$. Its characteristic equation is $r^2 - r + x^2 = 0$.

i)
$$x = \pm \frac{1}{2}$$

There is only one eigenvalue $\lambda = \frac{1}{2}$, so we can set $D_n = \left(\frac{1}{2}\right)^{n-1}(An+B)$. Based on two initial conditions, we obtain $D_n = \left(\frac{1}{2}\right)^n (n+1)$.

ii)
$$x \neq \pm \frac{1}{2}$$

There are two eigenvalues λ_1 and λ_2 , so $D_n = A\lambda_1^{n-1} + B\lambda_2^{n-1}$, where

$$\begin{split} \lambda_1 &= \frac{1 - \sqrt{1 - 4x^2}}{2}, \ \lambda_2 = \frac{1 + \sqrt{1 - 4x^2}}{2}. \text{ Based on two initial conditions, we obtain} \\ A &= \frac{\lambda_2 - (1 - x^2)}{\lambda_2 - \lambda_1}, \ B = \frac{(1 - x^2) - \lambda_1}{\lambda_2 - \lambda_1}. \end{split}$$

By i) and ii), we can get the final solution.

$$\begin{split} D_n &= \begin{cases} \left(\frac{1}{2}\right)^n (n+1) & (x = \pm \frac{1}{2}) \\ & \left\{\frac{\lambda_2 - (1-x^2)}{\lambda_2 - \lambda_1} \lambda_1^{n-1} + \frac{(1-x^2) - \lambda_1}{\lambda_2 - \lambda_1} \lambda_2^{n-1} \right. & (x \neq \pm \frac{1}{2}) \end{cases} \\ \text{where } \lambda_1 &= \frac{1 - \sqrt{1 - 4x^2}}{2}, \ \lambda_2 &= \frac{1 + \sqrt{1 - 4x^2}}{2}. \end{split}$$