POW 2015-17

Sunghyuk Park, 2014

(In the following proof, for any $N \times N$ matrix M, M_{\sharp} denotes the submatrix of M obtained by deleting the N-th row and column.)

Proof. Let $H=LL^*$ be the Cholesky decomposition, and $A=L^{-1}$. $H'=L_{\sharp}L_{\sharp}^*$ because L is lower triangular. Also, $G=A^*A$ and $G'=A_{\sharp}^*A_{\sharp}$. In this time the upper triangular matrix (A^*) is multiplied in front of the lower triangular matrix (A), so $G_{\sharp} \neq G'$. Their difference is $G_{ij} - G'_{ij} = A_{iN}^*A_{Nj}$. Since $G_{iN} = A_{iN}^*A_{NN}$, $G_{Nj} = A_{NN}^*A_{Nj}$ and $G_{NN} = A_{NN}^*A_{NN}$, we have

$$G_{ij} - G'_{ij} = \frac{G_{iN}G_{Nj}}{G_{NN}}$$

.