POW 2015-17

Sunghyuk Park, 2014

(In the following proof, for any $N \times N$ matrix M, M_{\sharp} denotes the submatrix of M obtained by deleting the N-th row and column.)

Proof. Let $H=L L^{*}$ be the Cholesky decomposition, and $A=L^{-1} . H^{\prime}=$ $L_{\sharp} L_{\sharp}^{*}$ because L is lower triangular. Also, $G=A^{*} A$ and $G^{\prime}=A_{\sharp}^{*} A_{\sharp}$. In this time the upper triangular matrix $\left(A^{*}\right)$ is multiplied in front of the lower triangular matrix (A), so $G_{\sharp} \neq G^{\prime}$. Their difference is $G_{i j}-G_{i j}^{\prime}=A_{i N}^{*} A_{N j}$. Since $G_{i N}=A_{i N}^{*} A_{N N}, G_{N j}=A_{N N}^{*} A_{N j}$ and $G_{N N}=A_{N N}^{*} A_{N N}$, we have

$$
G_{i j}-G_{i j}^{\prime}=\frac{G_{i N} G_{N j}}{G_{N N}}
$$

