## KAIST POW 2015-14

2015 Inhyeok Choi
September 14, 2015

Problem. Find all positive integers $n$ such that the following statement holds:
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function that has a unique critical point c. If $f$ has a local maximum at $c$, then $f(c)$ is an absolute maximum of $f$.

Solution. (1) $n=1$
Suppose that $f(d)>f(c)$ for some $d$. WLOG $d>c$ (otherwise consider $g=f(2 c-$ $x)$ ). $f$ has a local maximum at $c$, so for some $c \in I=(a, b), f(x) \leq f(c)$ on $I$. If the equality holds on $(c, b)$, that means $f^{\prime}(x)=0$ on $(c, b)$; contradiction. Thus $f(t)<f(c)$ for some $t \in(c, b)$. Obviously $d>c$. Then, the minimum of $f$ on $[c, d]$ is not attained at $c$ nor $d$ because $f(t)<f(c), f(d)$. Thus the minimum occurs in $(c, d)$, which is another critical point; contradiction. Thus such $d$ does not exists, $f(c)$ is an absolute maximum of $f$.
(2) $n \geq 2$ Let $f\left(x_{1}, \cdots, x_{n}\right)=-x_{1}^{2}-\sum_{k=2}^{n}\left(1-x_{1}\right)^{3} x_{k}^{2}$. $f$ has continuous partial derivatives so it is differentiable everywhere. Remark that

$$
\frac{\partial f}{\partial x_{i}}=\left\{\begin{array}{cc}
-2 x_{1}+3\left(1-x_{1}\right)^{2} \sum_{k=2}^{n} x_{k}^{2} & i=1 \\
-2 x_{i}\left(1-x_{1}\right)^{2} & i \neq 1
\end{array} .\right.
$$

We seek for the condition of $\nabla f(\mathbf{x})=\mathbf{0} . \partial f / \partial x_{i}=0(i \neq 1)$ forces $x_{i}=0$ or $x_{1}=1$. However if $x_{1}=1, \partial f / \partial x_{i}=-2 \neq 0$; thus $x_{i}=0$ for $i \geq 2$, and then $\partial f / \partial x_{1}=-2 x_{1}=$ $0 \Rightarrow x_{1}=0$. Putting $x_{1}=\cdots=x_{n}=0$, we assure that $\mathbf{0}$ is the only critical point.

Moreover, for $0<|\mathbf{x}|<1, f(\mathbf{x}) \leq f(\mathbf{0})=0$ because all of $-x_{1}^{2},-\left(1-x_{1}\right)^{3} x_{k}^{2}$ are non-positive. Thus $f$ has a local maximum at $\mathbf{0}$. However, remark $f(11,1, \cdots, 1)=$ $-121+1000(n-1)>0=f(\mathbf{0})$ so $f(\mathbf{0})$ is not an absolute maximum. In conclusion, the statement holds for $n=1$ only.

