POW 2015-15

Sunghyuk Park, 2014

There is such a sequence.
Proof. Let c_{n} be the least common multiple of $\{1, \ldots n\}$. It suffices to show that there is an integer sequence such that every integer appears infinitely many times, and the sequence is periodic modulo c_{m} for every positive integer m. This is because if a sequence is periodic modulo c_{m}, then it is also periodic modulo m.

Construct such a sequence inductively as follows:
Step1: $(\mathbf{1})=0$
Step2: $(\mathbf{2})=\underline{0}, 1, \underline{0},-1$
Step3: $(\mathbf{3})=0,1,0,-1,2,3,2,1,4,5,4,3,0,1,0,-1,-2,-1,-2,-3,-4,-3$, $-4,-5$

Step $n:(\mathbf{n})$
Step $n+1:(\mathbf{n + 1})=\underline{(\mathbf{n})}, c_{n}+(\mathbf{n}), 2 c_{n}+(\mathbf{n}), \ldots, c_{n+1}-c_{n}+(\mathbf{n}), \underline{(\mathbf{n})},-c_{n}+(\mathbf{n}),-2 c_{n}+$ $(\mathbf{n}), \ldots,-\overline{c_{n}+1}+c_{n}+(\mathbf{n})$
(Here, (n) denote the finite sequence in the n-th step, and $k+(\mathbf{n})$ is a translation of (\mathbf{n}) by k.)

In $(n+1)$-th step, the finite sequence is constructed using the n-th step in such a way that (i) the n-th step is preserved in front, (ii) it contains every integers x such that $|x| \leq c_{n+1}-1$, (iii) it is just a finite concatenation of the n-th step when taken modulo c_{n}, and (iv) the exact n-th step appears at least twice in the ($n+1$)-th step.

Because of the construction, the sequence is periodic modulo m for all c_{m}, and every integer appears infinitely many times as an integer n appears at least 2^{k} times in the $(n+k+1)$-th step of the construction.

