Problem. Let $M=\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ be a positive semidefinite Hermitian matrix. Prove that

$$
\operatorname{rank} M \leq \operatorname{rank} A+\operatorname{rank} C
$$

(Here, A, B, C are matrices.)
Solution. By definition of block matrix and adjoint, A and C are square matrices. Since M is a positive semidefinite Hermitian matrix, it has a Cholesky decomposition $M=L L^{*}$ where L is a lower triangular matrix denoted as $L=\left(\begin{array}{cc}L_{A} & O \\ L_{B} & L_{C}\end{array}\right)$, with same block structure of M. Then, $L_{A} L_{A}^{*}=A$ and $\left(\begin{array}{lll}L_{B} & L_{C}\end{array}\right)\left(\begin{array}{ll}L_{B} & L_{C}\end{array}\right)^{*}=$ $\left(\begin{array}{ll}L_{B} & L_{C}\end{array}\right)\binom{L_{B}^{*}}{L_{C}^{*}}=C$. Now, since rank $K=\operatorname{rank} K K^{*}$ for every matrix K over \mathbb{C}, thus

$$
\begin{aligned}
\operatorname{rank} M & =\operatorname{rank} L \leq \operatorname{rank}\left(\begin{array}{ll}
L_{A} & O
\end{array}\right)+\operatorname{rank}\left(\begin{array}{ll}
L_{B} & L_{C}
\end{array}\right)=\operatorname{rank} L_{A}+\operatorname{rank}\left(\begin{array}{ll}
L_{B} & L_{C}
\end{array}\right) \\
& =\operatorname{rank} L_{A} L_{A}^{*}+\operatorname{rank}\left(\begin{array}{lll}
L_{B} & L_{C}
\end{array}\right)\left(\begin{array}{ll}
L_{B} & L_{C}
\end{array}\right)^{*}=\operatorname{rank} A+\operatorname{rank} C
\end{aligned}
$$

