KAIST 11학번 수리과학과 최두성

<u>**Definition**</u> $M = {i 1^j}$ be a matrix in $F^{n \times n}$ whose entries are all zero except $(M)_{ij} = 1$.

<u>proof</u>

For $i \neq k$, $tr[A(^{i}1^{j})(^{j}1^{k})] = tr[A(^{i}1^{k})] = A_{ki}$, but $tr[A(^{j}1^{k})(^{i}1^{j})] = 0$ ($:: (^{j}1^{k})(^{i}1^{j}) = O$) $\therefore A_{ki} = 0$ for all $i \neq k$ Then for $i \neq j$, $tr[A(^{i}1^{j})(^{j}1^{i})] = tr[A(^{i}1^{i})] = A_{ii}$ and $tr[A(^{j}1^{i})(^{i}1^{j})] = tr[A(^{j}1^{j})] = A_{jj}$ $\therefore A_{ii} = A_{jj}$ for all $i \neq j$

We can check that A = cI satisfies tr(AXY) = tr(AYX) for all X, Y since the trace function is commutative. Therefore, A = cI for any c in F.