POW 2015-4

2014**** Lee, Jongwon

We begin with an simple lemma.

Lemma. Let A be a positive semidefinite hermitian matrix. Then Ax = 0 iff $x^*Ax = 0$ for vectors x.

Proof. The forward implication is trivial. For the backward implication, suppose $x^*Ax = 0$. Let $A = L^*L$ be the Cholesky decomposition of A. Then,

$$|Lx|^2 = x^* L^* Lx = x^* Ax = 0$$

so we have Lx = 0, so that $Ax = L^*Lx = 0$.

Back to our main problem,

Solution Let B be a $m \times n$ matrix, then A is a $m \times m$ matrix and C is a $n \times n$ matrix. Let $v \in ker(A)$, then

$$\begin{bmatrix} v \\ 0_n \end{bmatrix}^* \begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \begin{bmatrix} v \\ 0_n \end{bmatrix} = \begin{bmatrix} v \\ 0_n \end{bmatrix}^* \begin{bmatrix} Av \\ B^*v \end{bmatrix} = v^*Av = 0$$

so by the lemma, we have $\begin{bmatrix} v \\ 0_n \end{bmatrix} \in \ker(M)$. Similarly, if $v \in \ker(C)$, then

$$\begin{bmatrix} 0_m \\ v \end{bmatrix}^* \begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \begin{bmatrix} 0_m \\ v \end{bmatrix} = v^* C v = 0$$

so that $\begin{bmatrix} 0_m \\ v \end{bmatrix} \in \ker(M)$. Since $X = \left\{ \begin{bmatrix} v \\ 0_n \end{bmatrix} | v \in \ker(A) \right\}$ and $Y = \left\{ \begin{bmatrix} 0_m \\ v \end{bmatrix} | v \in \ker(C) \right\}$ have trivial intersection, we have

 $\operatorname{nullity}(M) \ge \operatorname{dim}(\operatorname{span}(X \cup Y)) = \operatorname{dim}(X) + \operatorname{dim}(Y) = \operatorname{nullity}(A) + \operatorname{nullity}(C)$ Now the problem statement follows from the rank nullity theorem.