KAIST POW 2015-02

Problem.

Let T be a triangle. Prove that if every point of a plane is colored by Red, Blue, or Green, then there is a triangle similar to T such that all vertices of this triangle have the same color.

Proof.

We'll use the following well-known theorem;
Theorem (Van der Waerden's theorem). Let r and k any positive integers. Then there exists a positive integer $W(r, k)$ such that if we color the integers $\{1,2, \cdots, W(r, k)\}$ using r colors, there exist k integers in arithmetic progression all of the same color. (see here)

From the theorem, we directly obtain the following corollary;
Corollary. Let $n=W(r, k)$. Choose any collinear points $P_{1}, P_{2}, \cdots, P_{n}$ from a plane which satisfy $P_{1} P_{2}=P_{2} P_{3}=\cdots=P_{n-1} P_{n}$ (i.e evenly spaced). Color the points using r colors. Then, there exist k points $P_{i_{1}}, P_{i_{2}}, \cdots, A_{i_{k}}$ such that all the points have the same color and $\overline{P_{i_{1}} P_{i_{2}}}=\overline{P_{i_{2}} P_{i_{3}}}=\cdots=$ $\overline{P_{i_{k-1}} P_{i_{k}}}$.

Figure 1: Example - when $r=2, k=3$ and $n=W(2,3)=9$
Now assume that there is a 3 -coloring(Red, Blue or Green) of the points on the plane such that there does NOT exist any monochromatic triangle similar to T. Let $s=W(2,3)$ and $t=W(3, s+1)$, and let $c(P)=$ (color of the point P).
Let's choose any t points on the plane which are collinear and evenly spaced. By $(*)$, there exists $(s+1)$ points A_{1}, \cdots, A_{s+1} such that $c\left(A_{1}\right)=$ $\cdots=c\left(A_{s+1}\right)$ and $\overline{A_{1} A_{2}}=\cdots=\overline{A_{s} A_{s+1}}$. Without loss of generality, suppose that A_{i} s are colored with Red.

Now define B_{i} as a point in the upper side of $\overline{A_{1} A_{s+1}}$ such that $\triangle A_{i} B_{i} A_{i+1}$ is similar to T. (See figure 2)

Figure 2: Points B_{1}, \cdots, B_{s}
If $c\left(B_{i}\right)$ is Red, then $\triangle A_{i} B_{i} A_{i+1}$ becomes monochromatic. So, B_{1}, \cdots, B_{s} should be colored with Blue or Green, not Red. Applying (*) again, there exist 3 points B_{u}, B_{v}, B_{w} such that $c\left(B_{u}\right)=c\left(B_{v}\right)=c\left(B_{w}\right)$ and B_{v} is the midpoint of B_{u} and B_{w}. Without loss of generality, suppose that those points are colored with Blue.

Now let's draw three points C, D, E such that $\triangle B_{u} C B_{v}, \triangle B_{v} D B_{w}$, and $\triangle C E D$ are similar to T. (See figure 3)

Figure 3: Points C, D, and E
C and D should be colored with Green; if we color one of them with Blue, one of the triangles $\triangle B_{u} C B_{v}, \triangle B_{v} D B_{w}$ will be Blue - monochromatic. Also, if we color one of them with Red, one the triangles $\triangle A_{u} C A_{v+1}$, $\triangle A_{v} D A_{w+1}$ will be Red - monochromatic.

However, we can't color E with any color! If E is colored with Red, Blue, or Green, then $\triangle A_{u} E A_{w+1}, \triangle B_{u} E B_{w}, \triangle C E D$ will be Red, Blue, Green -
monochromatic respectively. It's contradiction.

Therefore, for any 3 -coloring of the points in \mathbb{R}^{2}, there exists a monochromatic triangle similar to T.

