KAIST POW 2015-02

Problem.

Let T be a triangle. Prove that if every point of a plane is colored by Red, Blue, or Green, then there is a triangle similar to T such that all vertices of this triangle have the same color.

Proof.

We'll use the following well-known theorem;

Theorem (Van der Waerden's theorem). Let r and k any positive integers. Then there exists a positive integer W(r, k) such that if we color the integers $\{1, 2, \dots, W(r, k)\}$ using r colors, there exist k integers in arithmetic progression all of the same color. (see here)

From the theorem, we directly obtain the following corollary;

Corollary. Let n = W(r, k). Choose any collinear points P_1, P_2, \dots, P_n from a plane which satisfy $\overline{P_1P_2} = \overline{P_2P_3} = \dots = \overline{P_{n-1}P_n}$ (i.e evenly spaced). Color the points using r colors. Then, there exist k points $P_{i_1}, P_{i_2}, \dots, A_{i_k}$ such that all the points have the same color and $\overline{P_{i_1}P_{i_2}} = \overline{P_{i_2}P_{i_3}} = \dots = \overline{P_{i_{k-1}}P_{i_k}}$. $\dots (*)$

Figure 1: Example - when r = 2, k = 3 and n = W(2,3) = 9

Now assume that there is a 3-coloring (Red, Blue or Green) of the points on the plane such that there does NOT exist any monochromatic triangle similar to T. Let s = W(2,3) and t = W(3, s + 1), and let c(P) =(color of the point P).

Let's choose any t points on the plane which are collinear and evenly spaced. By (*), there exists (s + 1) points A_1, \dots, A_{s+1} such that $c(A_1) = \dots = c(A_{s+1})$ and $\overline{A_1A_2} = \dots = \overline{A_sA_{s+1}}$. Without loss of generality, suppose that A_i s are colored with Red. Now define B_i as a point in the upper side of A_1A_{s+1} such that $\triangle A_iB_iA_{i+1}$ is similar to T. (See figure 2)

Figure 2: Points B_1, \dots, B_s

If $c(B_i)$ is Red, then $\triangle A_i B_i A_{i+1}$ becomes monochromatic. So, B_1, \dots, B_s should be colored with Blue or Green, not Red. Applying (*) again, there exist 3 points B_u, B_v, B_w such that $c(B_u) = c(B_v) = c(B_w)$ and B_v is the midpoint of B_u and B_w . Without loss of generality, suppose that those points are colored with Blue.

Now let's draw three points C, D, E such that $\triangle B_u C B_v$, $\triangle B_v D B_w$, and $\triangle C E D$ are similar to T. (See figure 3)

Figure 3: Points C, D, and E

C and D should be colored with Green; if we color one of them with Blue, one of the triangles $\Delta B_u C B_v$, $\Delta B_v D B_w$ will be Blue - monochromatic. Also, if we color one of them with Red, one the triangles $\Delta A_u C A_{v+1}$, $\Delta A_v D A_{w+1}$ will be Red - monochromatic.

However, we can't color E with any color! If E is colored with Red, Blue, or Green, then $\triangle A_u E A_{w+1}$, $\triangle B_u E B_w$, $\triangle C E D$ will be Red, Blue, Green -

monochromatic respectively. It's contradiction.

Therefore, for any 3-coloring of the points in \mathbb{R}^2 , there exists a monochromatic triangle similar to T.