POW 2014-23

2014 Heo Won Yeong (Undecided)

November 22, 2014

Theorem 1. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function with f(0) = 0, f(1) = 1. For every positive intege n, there exist $k_1, k_2, ..., k_n \in (0,1)$ such that $f(k_i) = i/n$ and $k_1 < k_2 < ... < k_n$.

Proof. f is differentiable on (0, 1), so it is continuous on [0, 1]. Because of intermediate value theorem, for every i = 1, 2, ..., n, there exist $k \in (0, 1)$ such that f(k) = i/n. Let k_i be the smallest value of $k \in (0, 1)$ such that f(k) = i/n.

 $f(0) = 0 < i/n < (i+1)/n = f(k_{i+1})$. Therefore, there exists $t \in (0, k_{i+1})$ such that f(t) = i/n. k_i is the smallest value of $k \in (0,1)$ such that f(k) = i/n, so $k_i < k_{i+1}$.

Now, we can prove the problem.

Problem 1. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function with f(0) = 0, f(1) = 1. Prove that for every positive interge n, there exist n distinct numbers $x_1, x_2, ..., x_n \in (0,1)$ such that $\frac{1}{n} \sum_{i=1}^n \frac{1}{f'(x_i)} = 1$

Proof. Because of Theorem 1, there exist $k_1, k_2, ..., k_n \in (0, 1)$ such that $f(k_i) = i/n$ and $k_1 < k_2 < ... < k_n$. Additionally, let $k_0 = 0$.

Use mean value theorem. f is differentiable on (0, 1), and it is continuous on [0, 1]. Therefore, for every i = 1, 2, 3, ..., n, there exist $x_i \in (k_{i-1}, k_i)$ such that $f'(x_i) = \frac{f(k_i) - f(k_{i-1})}{k_i - k_{i-1}} = \frac{1/n}{k_i - k_{i-1}}$.

Now, $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{f'(x_i)} = \frac{1}{n} \sum_{i=1}^{n} \frac{k_i - k_{i-1}}{1/n} = \sum_{i=1}^{n} (k_i - k_{i-1}) = k_n - k_0 = 1.$