# POW 2014-23 

## 2014 Heo Won Yeong (Undecided)

November 22, 2014

Theorem 1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=$ $0, f(1)=1$. For every positive interge $n$, there exist $k_{1}, k_{2}, \ldots, k_{n} \in(0,1)$ such that $f\left(k_{i}\right)=i / n$ and $k_{1}<k_{2}<\ldots<k_{n}$.

Proof. $f$ is differentiable on $(0,1)$, so it is continuous on $[0,1]$. Because of intermediate value theorem, for every $i=1,2, \ldots, n$, there exist $k \in(0,1)$ such that $f(k)=i / n$. Let $k_{i}$ be the smallest value of $k \in(0,1)$ such that $f(k)=i / n$.
$f(0)=0<i / n<(i+1) / n=f\left(k_{i+1}\right)$. Therefore, there exists $t \in\left(0, k_{i+1}\right)$ such that $f(t)=i / n . \quad k_{i}$ is the smallest value of $k \in(0,1)$ such that $f(k)=i / n$, so $k_{i}<k_{i+1}$.

Now, we can prove the problem.
Problem 1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=$ $0, f(1)=1$. Prove that for every positive interge $n$, there exist $n$ distinct numbers $x_{1}, x_{2}, \ldots, x_{n} \in(0,1)$ such that $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{f^{\prime}\left(x_{i}\right)}=1$

Proof. Because of Theorem 1, there exist $k_{1}, k_{2}, \ldots, k_{n} \in(0,1)$ such that $f\left(k_{i}\right)=i / n$ and $k_{1}<k_{2}<\ldots<k_{n}$. Additionally, let $k_{0}=0$.

Use mean value theorem. $f$ is differentiable on $(0,1)$, and it is continuous on $[0,1]$. Therefore, for every $i=1,2,3, \ldots, n$, there exist $x_{i} \in\left(k_{i-1}, k_{i}\right)$ such that $f^{\prime}\left(x_{i}\right)=\frac{f\left(k_{i}\right)-f\left(k_{i-1}\right)}{k_{i}-k_{i-1}}=\frac{1 / n}{k_{i}-k_{i-1}}$.

Now, $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{f^{\prime}\left(x_{i}\right)}=\frac{1}{n} \sum_{i=1}^{n} \frac{k_{i}-k_{i-1}}{1 / n}=\sum_{i=1}^{n}\left(k_{i}-k_{i-1}\right)=k_{n}-k_{0}=1$.

