KAIST POW 2014-18

2012 Jimin Park

October 7, 2014

Lemma 1. When n is odd, $\forall A \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, if $A+A^{T}$ is invertible, then $\operatorname{nullity}(A) \leq(n-1) / 2$.

Proof. Assume that $\operatorname{nullity}(A) \geq(n+1) / 2$. Since nullity $(A)=\operatorname{nullity}\left(A^{T}\right)$, $\operatorname{nullity}(A)+\operatorname{nullity}\left(A^{T}\right)=2 \times \operatorname{nullity}(A)=n+1>n$, so $\exists x \in \mathbb{R}^{n}$ such that $x \neq 0$ and $x \in \operatorname{ker}(A) \cap \operatorname{ker}\left(A^{T}\right)$. Then $\left(A+A^{T}\right) x=A x+A^{T} x=0$, which shows that $A+A^{T}$ is not invertible.

Therefore, if $A+A^{T}$ is invertible, then $\operatorname{nullity}(A) \leq(n-1) / 2$.
Problem. Let A and B be $n \times n$ real matrices for an odd integer n. Prove that if both $A+A^{T}$ and $B+B^{T}$ are invertible, then $A B \neq 0$.

Proof. By the Lemma 1, nullity $(A) \leq(n-1) / 2$ and nullity $(B) \leq(n-1) / 2$. By the rank-nullity theorem, $\operatorname{dimim}(B) \geq(n+1) / 2>(n-1) / 2=\operatorname{dim} \operatorname{ker}(A)$, so $\exists x \in \mathbb{R}^{n}, B x \notin \operatorname{ker}(A)$ and $A B x \neq 0$. Therefore $A B \neq 0$.

