KAIST POW 2014-18

2012 Jimin Park

October 7, 2014

Lemma 1. When n is odd, $\forall A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, if $A + A^T$ is invertible, then $\operatorname{nullity}(A) \le (n-1)/2.$

Proof. Assume that $\operatorname{nullity}(A) \ge (n+1)/2$. Since $\operatorname{nullity}(A) = \operatorname{nullity}(A^T)$, nullity(A) + nullity(A^T) = 2 × nullity(A) = n + 1 > n, so $\exists x \in \mathbb{R}^n$ such that $x \neq 0$ and $x \in \ker(A) \cap \ker(A^T)$. Then $(A + A^T)x = Ax + A^Tx = 0$, which shows that $A + A^T$ is not invertible. Therefore, if $A + A^T$ is invertible, then nullity(A) $\leq (n - 1)/2$.

Problem. Let A and B be $n \times n$ real matrices for an odd integer n. Prove that if both $A + A^T$ and $B + B^T$ are invertible, then $AB \neq 0$.

Proof. By the Lemma 1, $\operatorname{nullity}(A) \leq (n-1)/2$ and $\operatorname{nullity}(B) \leq (n-1)/2$. By the rank-nullity theorem, $\dim \operatorname{im}(B) \ge (n+1)/2 > (n-1)/2 = \dim \ker(A)$, so $\exists x \in \mathbb{R}^n, Bx \notin \ker(A) \text{ and } ABx \neq 0.$ Therefore $AB \neq 0$.