2014-19 Two Complex Numbers 정경훈 (서울대학교 컴퓨터공학과 2006학번) October 15, 2014

Problem. Prove that for two non-zero complex numbers x and y, if $|x|, |y| \le 1$, then $|x - y| \le |\log x - \log y|$.

Proof. We will prove it by showing $|x - y|^2 \le |\log x - \log y|^2$. Let $\theta \in [0, \pi]$ the smallest positive angular difference between x and y. By the cosine rule

$$|x - y|^{2} = (|x| - |y|)^{2} + 2|x||y|(1 - \cos\theta) \le (|x| - |y|)^{2} + 2 - 2\cos\theta,$$

and by the properties of logarithm

 $\left|\log x - \log y\right|^2 \ge \left(\log |x| - \log |y|\right)^2 + \theta^2 \ge \left(|x| - |y|\right)^2 + \theta^2.$

With the Taylor series we know $2 - 2\cos\theta \le \theta^2$, which completes the proof.