2014-19 Two Complex Numbers

정경훈 (서울대학교 컴퓨터공학과 2006학번)
October 15, 2014

Problem. Prove that for two non-zero complex numbers x and y, if $|x|,|y| \leq 1$, then $|x-y| \leq|\log x-\log y|$.

Proof. We will prove it by showing $|x-y|^{2} \leq|\log x-\log y|^{2}$. Let $\theta \in[0, \pi]$ the smallest positive angular difference between x and y. By the cosine rule

$$
|x-y|^{2}=(|x|-|y|)^{2}+2|x||y|(1-\cos \theta) \leq(|x|-|y|)^{2}+2-2 \cos \theta
$$

and by the properties of logarithm

$$
|\log x-\log y|^{2} \geq(\log |x|-\log |y|)^{2}+\theta^{2} \geq(|x|-|y|)^{2}+\theta^{2}
$$

With the Taylor series we know $2-2 \cos \theta \leq \theta^{2}$, which completes the proof.

